\(\left(a+b+c\right)^2\) + \(\left(a+b-c\right)^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

mày điên à, làm gì có câu hỏi kiểu này?

1 tháng 11 2016

mày bị điên rồi hả câu hỏi thế này làm gì có người giải được

14 tháng 8 2018

\(\left(a-b+c\right)^2=\left[a+\left(-b\right)+c\right]^2\)

                             \(=a^2+\left(-b^2\right)+c^2+2.a.\left(-b\right)+2.\left(-b\right)\left(-c\right)+2.c.a\)

                              \(=a^2+b^2+c^2-2ab-2bc+2ca\)

a: \(=a^2-b^4\)

b: \(=\left(a^2+2a\right)^2-9\)

c: \(=a^2-\left(2a+3\right)^2\)

d: \(=a^4-\left(2a-3\right)^2\)

e: \(=\left(-a^2-2a+3\right)^2\)

g: \(=4a^2-a^4\)

12 tháng 9 2017

Đăng ít thôi.

12 tháng 9 2017

Liên quan à!!!

b: \(=\left(2ab-a^2-b^2+1\right)\left(2ab+a^2+b^2-1\right)\)

\(=\left[1-\left(a^2-2ab+b^2\right)\right]\left[\left(a^2+2ab+b^2\right)-1\right]\)

\(=\left[1-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-1\right]\)

\(=\left(1-a+b\right)\left(1+a-b\right)\left(a+b-1\right)\left(a+b+1\right)\)

c: \(=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)

\(=\left[x\left(y-2\right)-2\left(y-2\right)\right]\left[x\left(y+2\right)+2\left(y+2\right)\right]\)

\(=\left(y-2\right)\left(x-2\right)\left(x+2\right)\left(y+2\right)\)

NV
15 tháng 6 2019

\(VT=\frac{c-b}{\left(a-b\right)\left(c-a\right)}+\frac{a-c}{\left(a-b\right)\left(b-c\right)}+\frac{b-a}{\left(b-c\right)\left(c-a\right)}\)

\(=\frac{-\left(b-c\right)^2-\left(c-a\right)^2-\left(a-b\right)^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{-2a^2-2b^2-2c^2+2ab+2ac+2bc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{2ab-2ac+2bc-2b^2+2ab+2ac-2bc-2a^2-2ab+2ac+2bc-2c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{2\left(a-b\right)\left(b-c\right)+2\left(a-b\right)\left(c-a\right)+2\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{2}{c-a}+\frac{2}{b-c}+\frac{2}{a-b}\)

1 tháng 1 2018

ta có \(Q=\frac{a^2+2a+1}{2a^2+\left(1-a\right)^2}+...\)

              \(=\frac{a^2+2a+1}{3a^2-2a+1}+...=\frac{1}{3}+\frac{\frac{8}{3}a+\frac{2}{3}}{3a^2-2a+1}+...\)

              \(=1+\frac{\frac{8}{3}a+\frac{2}{3}}{3a^2-2a+1}+\frac{\frac{8}{3}b+\frac{2}{3}}{3b^2-2b+1}+\frac{\frac{8}{3}c+\frac{2}{3}}{3c^2-2c+1}\)

mà \(3a^2-2a+1=3\left(a-\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)

=>\(\frac{\frac{8}{3}a+\frac{2}{3}}{3a^2-2a+1}\le\frac{\frac{8}{3}a+\frac{2}{3}}{\frac{2}{3}}=\frac{3}{2}\left(\frac{8}{3}a+\frac{2}{3}\right)=4a+1\)

tương tự mấy cái kia rồi + vào, ta có 

\(Q\le1+4\left(a+b+c\right)+3=8\)

dấu = xảy ra <=>a=b=c=1/3

^_^