K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2023

a) (3x - 2)2 - (1 + 5x)2

= (3x - 2 - 1 - 5x)(3x - 2 + 1 + 5x)

= (-2x - 3)(8x - 1)

b) (3x + 4)(3x - 4) - (5 - x)2

= (3x)2 - 42 - (25 - 10x + x2)

= 9x2 - 16 - 25 + 10x - x2

= 8x2  + 10x - 41

c) \(\left(\dfrac{1}{2}x+4\right)^2-\left(\dfrac{1}{2}x+3\right)\left(\dfrac{1}{2}x-3\right)\)

\(=\left(\dfrac{1}{2}x\right)^2+2.\dfrac{1}{2}x.4+4^2-\left[\left(\dfrac{1}{2}x\right)^2-3^2\right]\)

\(=\dfrac{1}{4}x^2+4x+16-\dfrac{1}{4}x^2+9\)

\(=4x+25\)

a: =9x^2-12x+4-25x^2-10x-1

=-16x^2-22x+3

b: =9x^2-16-x^2+10x-25

=8x^2+10x-41

c: \(=\dfrac{1}{4}x^2+4x+16-\dfrac{1}{4}x^2+9=4x+25\)

16 tháng 4 2018

\(\text{a) }\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\\ \Leftrightarrow4\left(5x^2-3x\right)+5\left(3x+1\right)< 10x\left(2x+1\right)-15\\ \Leftrightarrow20x^2-12x+15x+5< 20x^2+10x-15\\ \Leftrightarrow20x^2+3x-20x^2-10x< -15-5\\ \Leftrightarrow-7x< -20\\ \Leftrightarrow x>\dfrac{20}{7}\)

Vậy bất phương trình có nghiệm \(x>\dfrac{20}{7}\)

\(\text{b) }\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}\ge\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\\ \Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)\ge4x\left(1-3x\right)-15x\\ \Leftrightarrow20x-80-12x^2-6x\ge4x-12x^2-15x\\ \Leftrightarrow-12x^2+14x+12x^2+11x\ge80\\ \Leftrightarrow25x\ge80\\ \Leftrightarrow x\ge\dfrac{16}{5}\)

Vậy bất phương trình có nghiệm \(x\ge\dfrac{16}{5}\)

\(\text{c) }\left(x+3\right)^2\le x^2-7\\ \Leftrightarrow x^2+6x+9\le x^2-7\\ \Leftrightarrow x^2+6x-x^2\le-7-9\\ \Leftrightarrow6x\le-16\\ \Leftrightarrow x\le-\dfrac{8}{3}\)

Vậy bất phương trình có nghiệm \(x\le-\dfrac{8}{3}\)

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

a: =>5-x+6=12-8x

=>-x+11=12-8x

=>7x=1

hay x=1/7

b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)

\(\Leftrightarrow9x+6-3x-1=12x+10\)

=>12x+10=6x+5

=>6x=-5

hay x=-5/6

d: =>(x-2)(x-3)=0

=>x=2 hoặc x=3

17 tháng 6 2017

a, \(xy\left(x+y\right)-x^2\left(x+y\right)-y^2\left(x-y\right)\)

\(=x^2y+xy^2-x^3-x^2y-xy^2+y^3\)

\(=y^3-x^3\)

b, \(x^2-x^2\left(5x+1\right)+x\left(x-3\right)\)

\(=x^2-5x^3-x^2+x^2-3x\)

\(=-5x^3+x^2-3x\)

Chúc bạn học tốt!!!

17 tháng 6 2017

c, \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)

\(=3x^2-6x-5x+5x^2-8x^2+24\)

\(=\left(3x^2-5x^2-8x^2\right)+\left(-6x-5x\right)+24\)

\(=-10x^2-11x+24\)

d, \(\dfrac{1}{2}\left(x+4\right)+\dfrac{1}{2}x^2\left(6x-3\right)-x\left(x^2+\dfrac{1}{2}\right)\)

\(=\dfrac{1}{2}x+2+3x^3-\dfrac{3}{2}x^2-x^3-\dfrac{1}{2}x\)

\(=-x^3+\left(3x^2-\dfrac{3}{2}x^2\right)+\left(\dfrac{1}{2}x-\dfrac{1}{2}x\right)+2\)

\(=-x^3+\dfrac{3}{2}x^2+2\)

\(=-\left(x^3-\dfrac{3}{2}x^2-2\right)=-\left(x^3-2x^2+\dfrac{1}{2}x^2-x+x-2\right)\)

\(=-\left[\left(x^3-2x^2\right)+\left(\dfrac{1}{2}x^2-x\right)+\left(x-2\right)\right]\)

\(=-\left[x^2.\left(x-2\right)+\dfrac{1}{2}x.\left(x-2\right)+\left(x-2\right)\right]\)

\(=-\left[\left(x-2\right).\left(x^2+\dfrac{1}{2}x+1\right)\right]\)

Chúc bạn học tốt!!!

23 tháng 7 2018

a ) \(\left(5x+2y\right)^2=25x^2+20xy+4y^2\)

b ) \(\left(-3x+2\right)^2=9x^2-12x+4\)

c ) \(\left(\dfrac{2}{3}x+\dfrac{1}{3}y\right)^2=\dfrac{4}{9}x^2+\dfrac{4}{9}xy+\dfrac{1}{9}y^2\)

d ) \(\left(2x-\dfrac{5}{2}y\right)^2=4x^2-10xy+\dfrac{25}{4}y^2\)

e ) \(\left(x+\dfrac{4}{3}y^2\right)^2=x^2+\dfrac{8}{3}xy^2+\dfrac{16}{9}y^4\)

f ) \(\left(2x^2+\dfrac{5}{3}y\right)^2=4x^4+\dfrac{20}{3}x^2y+\dfrac{25}{9}y^2\)

15 tháng 4 2018

a) \(\left(2x+1\right)^2-\left(x+2\right)^2>0\)

\(\Leftrightarrow\left(2x+1-x-2\right)\left(2x+1+x+2\right)>0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\3x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\3x+3< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là x > 1 hoặc x < -1

b) Sửa lại rồi làm câu b nèk\(\dfrac{5x-3x}{5}+\dfrac{3x+1}{4}>\dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\)

\(\Leftrightarrow4\left(5x-3x\right)+5\left(3x+1\right)>10\left(x+2x\right)-30\)\(\Leftrightarrow20x-12x+15x+5>10x+20x-30\)\(\Leftrightarrow20x-12x+15x-10x-20x>-30-5\)\(\Leftrightarrow-7x>-35\)

\(\Leftrightarrow x< 5\)

c) \(\dfrac{-1}{2x+3}< 0\)

dễ nhé mình học bài hóa mai kt 15 phút nên ko có time để giúp

2: \(\Leftrightarrow\left(x-4\right)\left(x+1\right)+\left(x+4\right)\left(x-1\right)=2\left(x-1\right)\left(x+1\right)\)

=>x^2-3x-4+x^2+3x-4=2x^2-2

=>2x^2-8=2x^2-2(loại)

3: \(\Leftrightarrow\left(x^2-x\right)\left(x-3\right)+x^2\left(x+3\right)=-7x^2+3x\)

=>x^3-3x^2-x^2+3x+x^3+3x^2+7x^2-3x=0

=>2x^3+6x^2=0

=>2x^2(x+3)=0

=>x=0(nhận) hoặc x=-3(loại)

18 tháng 9 2017

a) 5x - 15y = 5(x - 3y)

b) \(\dfrac{3}{5}\)x2 + 5x4 - x2 - y

= \(\dfrac{3}{5}\)x2 + 5x2.x2 - x2 - y

= x2(\(\dfrac{3}{5}\) + 5x2 -1) - y

c) 14x2y2 - 21xy2 + 28x2y

= 7xy.xy - 7xy.3y + 7xy.4x

= 7xy(xy - 3y + 4x)

= 7xy[(xy - 3y) + 4x]

= 7xy[y(x - 3) +4x]

d) \(\dfrac{2}{7}x\)(3y - 1) - \(\dfrac{2}{7}y\)(3y - 1)

= (3y - 1).(\(\dfrac{2}{7}x\) - \(\dfrac{2}{7}y\) )

= (3y - 1).[\(\dfrac{2}{7}\)(x - y)]

e) x3 - 3x2 + 3x - 1

= x2.x - 3x.x + 3.x - 1

= x(x2-3x+3) - 1

g) 27x3 + \(\dfrac{1}{8}\)

= (3x)3 + \(\left(\dfrac{1}{2}\right)^3\)

= (3x + \(\dfrac{1}{2}\)).(9x2 - \(\dfrac{3}{2}\)x + \(\dfrac{1}{4}\))

h) (x+y)3 - (x-y)3

= 2(3x2y) + 2y3

f) (x+y)2 - 4x2

= -3x2 + y(2x + y)

24 tháng 9 2018

h,f ?????

giải rõ hơn nha

15 tháng 6 2017

Bài 2:

a, \(A=3x\left(2x-5y\right)+\left(3x-y\right)\left(-2x\right)-\dfrac{1}{2}\left(2-26xy\right)\)

\(=6x^2-15xy-6x^2+2xy-1+13xy\)

\(=-1\)

\(\Rightarrowđpcm\)

b, \(B=\left(2x-3\right)\left(4x+1\right)-4\left(x-1\right)\left(2x-1\right)-2x+5\)

\(=8x^2+2x-12x-3-4\left(2x^2-x-2x+1\right)-2x+5\)

\(=8x^2-10x+2-8x^2+4x+8x-4-2x\)

\(=2-4=-2\)

\(\Rightarrowđpcm\)

a: \(\left(3x-1\right)^2-\left(x+3\right)^3=\left(2-x\right)\left(x^2+2x+4\right)\)

\(\Leftrightarrow9x^2-6x+1-x^3-9x^2-27x-27=8-x^3\)

\(\Leftrightarrow-x^3-33x-26-8+x^3=0\)

=>-33x=34

hay x=-34/33

b: \(\left(x+1\right)\left(x-1\right)\left(x^2+1\right)-\left(x^2-1\right)^2=2\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)-\left(x^2-1\right)^2=2\)

\(\Leftrightarrow x^4-1-x^4+2x^2-1=2\)

\(\Leftrightarrow2x^2=4\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

c: \(x^2-2\sqrt{3}x+3=0\)

\(\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\)

hay \(x=\sqrt{3}\)

d: \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)-\left(x-\sqrt{2}\right)^2=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}-x+\sqrt{2}\right)=0\)

\(\Leftrightarrow x-\sqrt{2}=0\)

hay \(x=\sqrt{2}\)