K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1, pt 4x-3y=-1 nhận cặp số nào sau đây là 1 nghiệm 
a, (-1;1)                             b, (1;-1)                            c, (-1;-1)                           d, (1;1)

2, góc nội tiếp chắn cung 120o thì có số đo bằng 
a, 120o                              b, 90o                               c, 30o                               d, 60o

3, pt x-3y=0 có nghiệm tổng quát là 
a, (x\(\in\)R; y=3x)                  b, (x=3y; y\(\in\)R)                  c, ( x\(\in\)R;y=3)                   d, (x=0;y\(\in\)R)

4, tìm giá trị của hàm số \(y=\dfrac{-1}{2}x^2\)tại x=-4
a,8                                    b, -8                                   c, 4                                 d, -4

5, cho đg tròn (O) và điểm P nằm ngoài đg tròn qua P kẻ các tiếp tuyến PA;PB với(O) biết \(\widehat{APB}=36^o\) góc ở tâm \(\widehat{AOB}\) có số đo bằng 
a, 72o                                     b, 100o                               c, 144o                          d, 154o

6, hệ pt \(\left\{{}\begin{matrix}2x-y=1\\4x-y=5\end{matrix}\right.\) có nghiệm là 
a, (2;-3)                            b,(2;3)                                c, (-2;-5)                        d, (-1;1)

7, trg các pt sau pt nào là pt bậc nhất 2 ẩn x, y
a, \(2.x^2+2y=4\)               b, \(\dfrac{3}{x}+\dfrac{4}{y}=4\)                    c, 0.x+0.y=7                  d, 2.x-3.y=0

8, cặp số (x0; y0) là nghiệm của hệ pt \(\left\{{}\begin{matrix}3x-5y=1\\-2x+3y=-1\end{matrix}\right.\) giá trị của biểu thức \(x_0^2+y_0^2\) bằng 
a, 5                                  b, 6                                      c, 7                              d, 8

9, tứ giác ABCD nội tiếp đg tròn có \(\widehat{DAB}=120^o\) khi đó số đo \(\widehat{BCD}\) bằng 
a, 120o                           b, 60o                                    c, 90o                           d, 180o

10, hệ pt \(\left\{{}\begin{matrix}x+2y=1\\2x-4y=5\end{matrix}\right.\)
a, vô nghiệm                  b, có 1 nghiệm         c, có 2 nghiệm               d, có vô số nghiệm

11, hệ pt \(\left\{{}\begin{matrix}6x+4y=2\\3x-my=1\end{matrix}\right.\) có vô số nghiệm khi và chỉ khi
a, m=1                                   b, m=2                            c, m=-1                        d, m=-2

12, dồ thị của hàm số y=ax2 đi qua điểm A (-2;1) khi đó giá trị của a bằng 
a, 4                                       b,1                                    c, \(\dfrac{1}{4}\)                             d, \(\dfrac{1}{2}\)    

13, cho đg tròn (O;R) lấy A, B, C thuộc đg tròn sao cho \(\widehat{BAC}=50^o\)  khi đó số đo củ cung nhỏ BC bằng
a, 50o                                  b, 60o                                  c, 70o                         d, 100

14, hàm số y=ax2, a≠0 đồng biến với x>0 khi đó hệ số
a, a>0                                 b, a<0                                 c, a≥0                          d, a≤0

15, trg các pt sau pt nào là pt bậc 2 của ẩn x 
a, 3x2-5x+2=0                 b, 0x2+3x-5=0                 c, \(\dfrac{1}{x^2}+x-5=0\)        d, \(x^2+\dfrac{1}{x}-5=0\)

16,cung AB là 1 cung của (O;R) vs sđ \(\stackrel\frown{AB}\) nhỏ là 80khi đó góc \(\widehat{AOB}\) có số đo bằng 
a, 180o                            b, 160o                                     c, 140o                     d, 80o

17, cho pt ax2+bx+c=0 (a≠0) nếu b2-4ac>0 thì pt có 2 nghiệm là 
a, \(x_1=\dfrac{-b-\sqrt{\Delta}}{a};x_2=\dfrac{-b+\sqrt{\Delta}}{a}\)                      b, \(x_1=\dfrac{-\sqrt{\Delta}-b}{2a};x_2=\dfrac{\sqrt{\Delta}-b}{2a}\)
c, \(x_1=\dfrac{b-\sqrt{\Delta}}{2a};x_2=\dfrac{b+\sqrt{\Delta}}{2a}\)                            d, x1=x2=\(\dfrac{-b}{2a}\)

18, số nghiệm của pt 4x2-2=0 là 
a, 1                              b, 2                                  c, 3                                   d, 4 

19, xác định hệ số a, b, c của ot 5x-2x2-3=0 khẳng định nào sau đây là đúng 
a, a=5                           b, b=-2                             c, c=3                               d, a=-2

20, xác định m để hàm số \(y=\left(m-\dfrac{1}{2}\right)x^2\) đồng biến khi x>0
a, \(m< \dfrac{1}{2}\)                    b, \(m>\dfrac{1}{2}\)                       c, \(m>-\dfrac{1}{2}\)                       d, \(m< -\dfrac{1}{2}\)

1

Câu 1: D

Câu 2: D

Câu 3: B

Câu 4: B

Câu 5: C

Câu 18: B

Câu 17: B

Câu 16: D

Câu 14: A

Câu 15: A

Câu 14: D

Câu 1: Tính \(A=\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}\)\(B=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)Câu 2: Giải phương trình và hệ phương trình saua) \(3x^2+2x=2\sqrt{x^2+x}+1-x\)b) \(\hept{\begin{cases}\frac{x-y}{7}+\frac{2x+y}{17}=7\\\frac{4x+y}{5}+\frac{y-7}{19}=15\end{cases}}\)Câu 3: Cạnh huyền của một tam giác vuông bằng 10cm. Hai cạnh góc vuông hơn kém nhau 2cm. Tìm các cạnh góc vuông...
Đọc tiếp

Câu 1: Tính 

\(A=\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}\)

\(B=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)

Câu 2: Giải phương trình và hệ phương trình sau

a) \(3x^2+2x=2\sqrt{x^2+x}+1-x\)

b) \(\hept{\begin{cases}\frac{x-y}{7}+\frac{2x+y}{17}=7\\\frac{4x+y}{5}+\frac{y-7}{19}=15\end{cases}}\)

Câu 3: Cạnh huyền của một tam giác vuông bằng 10cm. Hai cạnh góc vuông hơn kém nhau 2cm. Tìm các cạnh góc vuông của tam giác đó.

Câu 4: Từ một điểm A ở ngoài đường tròn (O; R) vẽ tiếp tuyến AB và cát tuyến AMN của đường tròn (M nằm giữa A và N; B thuộc cung lớn MN). Gọi C là điểm chính giữa cung nhỏ MN. Đường thẳng MN lần lượt cắt OC và BC tại I và E.

a) CMR: Tứ giác AIOB là tứ giác nội tiếp.

b) CMR: \(\Delta ABE\)cân.

c) Biết AB = 2R. Tính chu vi của nửa đường tròn ngoại tiếp tứ giác AIOB theo R.

d) Kẻ tiếp tuyến thứ hai AL của (O). Gọi K là giao điểm của LB và AO. CMR: AM.AN = AL2; AK.AO = AM.AN

Câu 5: Cho x, y là hai số thỏa mãn x + 2y = 3. Tìm giá trị nhỏ nhất của: E = x2 + 2y2 

Câu 6: Tìm các cặp nghiệm nguyên trong các trường hợp sau

a) x2 - xy + y2 = 2x - 3y - 2

b) m2 + n2 = m + n + 8

Help me!!!

Thanks trc

3
11 tháng 8 2020

CÂU 1:

\(A=\sqrt[4]{\left(2\sqrt{6}+5\right)^2}+\sqrt[4]{\left(5-2\sqrt{6}\right)^2}\)

\(A=\sqrt{2\sqrt{6}+5}+\sqrt{5-2\sqrt{6}}\)

\(A=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(A=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\)

\(A=2\sqrt{3}\)

11 tháng 8 2020

CÂU 1:

\(B=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(B=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)

\(B=1-a\)

Vậy \(B=1-a\)

12 tháng 5 2018

Câu2 : <=> 2x4-2x2+5x5-5=0
<=>2x2(x2-1)+5(x2-1)=0

<=>(2x2+5)(x-1)(x+1)=0

<=> x={+-1 } vì 2x2+5>0 mọi x

12 tháng 5 2018

Câu 2:<=>3x3-3x2+13x2-13x=0 <=> 3x2(x-1)+13x(x-1)=0 <=> x(3x2+13)(x-1)=0 <=>x={0;1) vì 3x2+13>0 mọi X

NV
12 tháng 7 2020

\(K=\left(\frac{a}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\left(\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\left(\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\right).\left(\sqrt{a}-1\right)\)

\(=\frac{a-1}{\sqrt{a}}\Rightarrow\left\{{}\begin{matrix}m=1\\n=-1\end{matrix}\right.\Rightarrow m^2+n^2=2\)

\(A=\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\Rightarrow\left\{{}\begin{matrix}m=0\\n=-2\end{matrix}\right.\Rightarrow m-n=2\)

12 tháng 7 2020

Cảm ơn bạn nha ;)

CÂU I:cho biểu thức \(P=\left(\frac{x+3\sqrt{x}+2}{x+\sqrt{x}-2}-\frac{x+\sqrt{x}}{x-1}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right)\)a,rút gọn Pb,tìm x để \(\frac{1}{P}-\frac{\sqrt{x}+1}{8}\ge1\)CÂU II:1, giải phương trình:   \(x-\sqrt{x-8}-3\sqrt{x}+1=0\)2,giải hệ phương trình:\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}}\)CÂU III:1,tìm các số nguyên dương x;y;z thỏa...
Đọc tiếp

CÂU I:

cho biểu thức \(P=\left(\frac{x+3\sqrt{x}+2}{x+\sqrt{x}-2}-\frac{x+\sqrt{x}}{x-1}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right)\)

a,rút gọn P

b,tìm x để \(\frac{1}{P}-\frac{\sqrt{x}+1}{8}\ge1\)

CÂU II:

1, giải phương trình:   \(x-\sqrt{x-8}-3\sqrt{x}+1=0\)

2,giải hệ phương trình:

\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}}\)

CÂU III:

1,tìm các số nguyên dương x;y;z thỏa mãn \(\frac{x-y\sqrt{2014}}{y-z\sqrt{2014}}\in Q\)và x2+y2+z2 là số nguyên tố

2,chứng minh rằng với n là số tự nhiên lớn hơn 1 thì 2n-1 không phải là số chính phương

CÂU IV:

cho tam giác ABC nhọn (AB<AC) nội tiếp (O;r).các đường cao AD;BE;CF cắt nhau tại H.tia EF cắt CB tại P;AP cắt (O;r) tại M(M khác A).

a,CMR:PE.PF=PM.PA

b,CMR:AM vuông góc với HM

c,cho BC cố định,điểm A di động trên cung lớn BC.Xác định vị trí của A để diện tích tam giác BHC lớn nhất

CÂU V:

cho a;b;c là các số thực dương.CMR:

\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(\frac{a+b+c}{3}\right)^2\)

3
8 tháng 1 2018

dat \(\frac{x-y\sqrt{2014}}{y-z\sqrt{2014}}=\frac{a}{b}\) dk (a,b)=1 a,b thuoc N*

khi do \(bx-by\sqrt{2014}=ay-az\sqrt{2014}\)

\(\Leftrightarrow bx-ay=\left(by-az\right)\sqrt{2014}\)

\(\Rightarrow\hept{\begin{cases}bx-ay=0\\by-az=0\end{cases}\Leftrightarrow\hept{\begin{cases}bx=ay\\by=az\end{cases}\Rightarrow}\frac{x}{y}=\frac{y}{z}=\frac{a}{b}\Rightarrow xz=y^2}\)

khi do \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-y^2=\left(x+z-y\right)\left(x+y+z\right)\)

vi x^2 +y^2 +z^2 la so nt va x+y+z>1

nen \(\hept{\begin{cases}x+y+z=x^2+y^2+z^2\\x+z-y=1\end{cases}}\)

giai ra ta co x=y=z=1

Câu !!   .1)\(PT< =>2x-2\sqrt{x-8}-6\sqrt{x}+2=0\)(đk:\(x\ge8\))

\(< =>x-8-2\sqrt{x-8}+1+x-6\sqrt{x}+9=0\)

\(< =>\left(\sqrt{x-8}-1\right)^2+\left(\sqrt{x}-3\right)^2=0\)

\(< =>\hept{\begin{cases}\sqrt{x-8}=1\\\sqrt{x}=3\end{cases}}\)

\(< =>x=9\)(thỏa mãn đk)

vậy.....

20 tháng 4 2017

Câu 1.

b/ Hoành độ giao điểm của (p) và (d) thỏa mãn phương trình:

\(\dfrac{1}{2}x^2=x+4\Leftrightarrow\dfrac{1}{2}x^2-x-4=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

Với x=4 => y=4+4=8

Với x=-2 => y=-2+4=2

Vậy tọa độ giao điểm của (p) và (d) là (4;8) và (-2;2)

Câu 2:

a/ Thay m=2 vào phương trình (1) ta được:

\(x^2-4x+3=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Vậy khi m=2 thì phương trình (1) có \(S=\left\{3;1\right\}\)

b/ Xét phương trình (1) có \(\Delta=\left(-2m\right)^2-4\left(2m-1\right)\)

= \(4m^2-8m+4=\left(2m-2\right)^2\)

Ta luôn có: \(\left(2m-2\right)^2\ge0\) với mọi m \(\Leftrightarrow\Delta\ge0\)

Vậy phương trình (1) luôn có nghiệm với mọi giá trị của m

Câu 3:

Xét phương trình có \(\Delta=\left(-1\right)^2-4\left(-12\right)=49>0\)

Vậy phương trình có 2 nghiệm phân biệt

ÁP dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1.x_2=-12\end{matrix}\right.\)

Ta có:

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1.x_2}=\dfrac{1}{-12}=\dfrac{-1}{12}\)

Vậy \(x_1+x_2=1;\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{-1}{12}\)

1. giải hệ phương trình sau: \(\hept{\begin{cases}2x-3\left|y\right|=4\\3x-y=17\end{cases}}\).4. a) Vẽ đồ thị của các hàm số y=|x−1| và y=|x+2| trên cùng 1 hệ trục xOyb) Chứng tỏ phương trình |x−1|=|x+2| có một nghiệm duy nhất. 5.Một người dự định rào xung quanh một miếng đất hình chữ nhật có diện tích 1.600m2, độ dài hai cạnh là x mét và y mét. Hai cạnh kề nhau rào bằng gạch, còn hai cạnh kia...
Đọc tiếp

1. giải hệ phương trình sau: \(\hept{\begin{cases}2x-3\left|y\right|=4\\3x-y=17\end{cases}}\)

.

4. 
a) Vẽ đồ thị của các hàm số y=|x−1| và y=|x+2| trên cùng 1 hệ trục xOy

b) Chứng tỏ phương trình |x−1|=|x+2| có một nghiệm duy nhất. 
5.
Một người dự định rào xung quanh một miếng đất hình chữ nhật có diện tích 1.600m2, độ dài hai cạnh là x mét và y mét. Hai cạnh kề nhau rào bằng gạch, còn hai cạnh kia rào bằng đá. 
Mỗi mét rào bằng gạch giá 200.000 đồng, mỗi mét rào bằng đá giá 500.000 đồng. 
a) Tính giá tiền dự định rào ( theo x và y). 
b) Người ấy có 55 triệu đồng, hỏi số tiền ấy có đủ để rào không ? 
Câu 6
Cho tam giác ABC có ba góc nhọn nội tiếp (O;R). Các đường cao AD, BE, CF cắt nhau tại 
H. AO kéo dài cắt (O) tại M. 
a) Chứng minh tứ giác AEHF là tứ giác nội tiếp và tứ giác BHCM là hình bình hành. 
b) Chứng minh AO ⊥ EF. 
c) Chứng minh rằng: 
SABC \(\le\frac{R^2+p^2}{4}\), trong đó SABC là diện tích tam giác ABC và p là chu vi của tam giác DEF.

giải hộ em đề này với ạ!!!

0