Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm miền xác định phải không
a)
\(1-\sqrt{2x-x^2}\)
a xác định \(\Leftrightarrow2x-x^2\ge0\)
\(0\le x\le2\)
b)
\(\sqrt{-4x^2+4x-1}\)
b xác định
\(\Leftrightarrow-4x^2+4x-1\ge0\)
\(-\left(4x^2-4x+1\right)\ge0\)
\(4x^2-4x+1\le0\)
\(\left(2x-1\right)^2\le0\)
2x - 1 = 0
x = 1/2
c)
\(\frac{x}{\sqrt{5x^2-3}}\)
c xác định
\(\Leftrightarrow5x^2-3>0\)
\(5x^2>3\)
\(x^2>\frac{3}{5}\)
\(\orbr{\begin{cases}x< -\frac{\sqrt{15}}{5}\\x>\frac{\sqrt{15}}{5}\end{cases}}\)
d)
d xác định
\(\Leftrightarrow\sqrt{x-\sqrt{2x-1}}>0\)
\(x-\sqrt{2x-1}>0\)
\(x>\sqrt{2x-1}\)
\(\hept{\begin{cases}2x-1\ge0\\x^2>2x-1\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x^2-2x+1>0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\\left(x-1\right)^2>0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x-1\ne0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne1\end{cases}}\)
e)
e xác định
\(\Leftrightarrow\frac{-2x^2}{3x+2}\ge0\)
\(3x+2< 0\) ( vì \(-2x^2\le0\forall x\) )
\(x< -\frac{2}{3}\)
f)
f xác định
\(\Leftrightarrow x^2+x-2>0\)
\(\orbr{\begin{cases}x< -2\\x>1\end{cases}}\)
\(\Leftrightarrow\sqrt{4-\left(1-x\right)^2}=\sqrt{3}\)
\(\Leftrightarrow4-\left(1-x\right)^2=3\)
\(\Leftrightarrow4-\left(1-2x+x^2\right)-3=0\)
\(\Leftrightarrow4-1+2x-x^2-3=0\)
\(\Leftrightarrow-x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
vay x=0 ; x=2
\(\sqrt{3x^2-5=2}\left(x\ge\sqrt{\frac{5}{3}}\right)\)
\(\Leftrightarrow3x^2-5=4\)
\(\Leftrightarrow3x^2=9\Leftrightarrow x^2=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}\left(tm\right)\\x=-\sqrt{3}\left(kotm\right)\end{cases}}\)
vay \(x=\sqrt{3}\)
\(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\left(x\ge49\right)\)
\(\Leftrightarrow\sqrt{x-49}=2\Leftrightarrow x^2-98x+2401=4\)
\(\Leftrightarrow x^2-98x+2397=0\Leftrightarrow x^2-47x-51x+2397\)\(\Leftrightarrow x\left(x-47\right)-51\left(x-47\right)\Leftrightarrow\left(x-47\right)\left(x-51\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-51=0\\x-47=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=51\left(tm\right)\\x=47\left(kotm\right)\end{cases}}}\)
xay x=51
\(\sqrt{\frac{-6}{1+x}}=5\left(x< -1\right)\)
\(\Leftrightarrow\frac{36}{x^2+2x+1}=25\Leftrightarrow25x^2+50x+25=36\)
\(\Leftrightarrow25x^2+50x-11=0\Leftrightarrow25x^2-5x+55x-11\)
\(\Leftrightarrow5x\left(5x-1\right)+11\left(5x-1\right)\Leftrightarrow\left(5x-1\right)\left(5x+11\right)\)\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\5x+11=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\left(kotm\right)\\x=\frac{-11}{5}\left(tm\right)\end{cases}}}\)
vay \(x=\frac{-11}{5}\)
nhung cau nay binh phuong len la xong
y 3 xem lai de bai
y 4,7 ko biet lam
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=2x-1+2x-3\)
\(=4x-4\)
Làm nốt
Lời giải:
Bạn cứ nhớ công thức $\sqrt{x^2}=|x|$, rồi dùng điều kiện đề bài để phá dấu trị tuyệt đối là được
a)
\(\sqrt{16a^2}-5a=\sqrt{(4a)^2}-5a=|4a|-5a=4a-5a=-a\)
b)
\(3x+2-\sqrt{9x^2+6x+1}=3x+2-\sqrt{(3x)^2+2.3x.1+1^2}\)
\(=3x+2-\sqrt{(3x+1)^2}=3x+2-|3x+1|=3x+2-(3x+1)=1\)
c)
\(\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+1+2.\sqrt{7}.\sqrt{1}}-\sqrt{7}\)
\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{7}=|\sqrt{7}+1|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)
d)
\(\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}=\sqrt{13+1-2\sqrt{13}}+\sqrt{13+1+2\sqrt{13}}\)
\(=\sqrt{(\sqrt{13}-1)^2}+\sqrt{(\sqrt{13}+1)^2}=|\sqrt{13}-1|+|\sqrt{13}+1|\)
\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)
e)
\(2x-\sqrt{4x^2-4x+1}=2x-\sqrt{(2x-1)^2}=2x-|2x-1|=2x-(2x-1)=1\)
g)
\(|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=|x-2|+\frac{\sqrt{(x-2)^2}}{x-2}=|x-2|+\frac{|x-2|}{x-2}\)
\(=(x-2)+\frac{(x-2)}{x-2}=x-2+1=x-1\)
1)\(\sqrt{2x^2-2x+\frac{1}{2}}=\frac{1}{\sqrt{2}}\left(ĐKXĐ:x^2-x+\frac{1}{4}\ge0\right)\)
\(2x^2-2x+\frac{1}{2}=\frac{1}{2}\)
\(2x^2-2x=0\)
\(2x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
2)\(\sqrt{9x-9}-2\sqrt{\frac{x-1}{4}}=6\left(ĐKXĐ:x\ge1\right)\)
\(\sqrt{9\left(x-1\right)}-2.\frac{\sqrt{x-1}}{2}=6\)
\(3\sqrt{x-1}-\left(\sqrt{x-1}\right)=6\)
\(2\sqrt{x-1}=6\)
\(\sqrt{x-1}=3=\sqrt{9}\)
\(\Rightarrow x=10\)
4)\(1-3x+\sqrt{x^2-6x+9}=0\)
\(1-3x+\sqrt{\left(x-3\right)^2}=0\)
\(1-3x+x-3=0\)
\(x=-1\)
5)\(\frac{1}{2}\sqrt{\frac{3x+9}{4}}+\sqrt{x+3}=\sqrt{1-x}\)
\(\frac{1}{2}.\frac{\sqrt{3x+9}}{2}+\sqrt{x+3}=\sqrt{1-x}\)
\(\frac{\sqrt{3x+9}}{4}+\sqrt{x+3}=\sqrt{1-x}\)
\(\frac{\sqrt{3x+9}+4\sqrt{x+3}}{4}=\frac{4\sqrt{1-x}}{4}\)
\(\Rightarrow\sqrt{3}.\sqrt{x+3}+4\sqrt{x+3}=4\sqrt{1-x}\)
\(\Rightarrow\left(\sqrt{3}+4\right)\left(\sqrt{x+3}\right)=\sqrt{2-2x}\)
6)\(\sqrt{4x^2-9}.\left(\sqrt{x+1}+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x^2-9=0\\\sqrt{x+1}+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}4x^2=9\\\sqrt{x+1}=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=-1\end{cases}}\)
Bài 2:
a) \(\frac{1}{\sqrt{1}+\sqrt{2}}=\frac{2-1}{\sqrt{1}+\sqrt{2}}=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{1}+\sqrt{2}}=\sqrt{2}-\sqrt{1}\)
Tương tự ta có: \(\frac{1}{\sqrt{2}+\sqrt{3}}=\sqrt{3}-\sqrt{2}\);
\(\frac{1}{\sqrt{3}+\sqrt{4}}=\sqrt{4}-\sqrt{3}\); ............. ; \(\frac{1}{\sqrt{2024}+\sqrt{2025}}=\sqrt{2025}-\sqrt{2024}\)
\(\Rightarrow A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+......+\sqrt{2025}-\sqrt{2024}\)
\(=\sqrt{2025}-\sqrt{1}=45-1=44\)
Bài 4:
\(M=\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
\(=\frac{\sqrt{2-2\sqrt{2}+1}}{\sqrt{9-2.3.2\sqrt{2}+8}}-\frac{\sqrt{2+2\sqrt{2}+1}}{\sqrt{9+2.3.2\sqrt{2}+8}}\)
\(=\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-\sqrt{8}\right)^2}}-\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+\sqrt{8}\right)^2}}\)
\(=\frac{\left|\sqrt{2}-1\right|}{\left|3-\sqrt{8}\right|}-\frac{\left|\sqrt{2}+1\right|}{\left|3+\sqrt{8}\right|}=\frac{\sqrt{2}-1}{3-\sqrt{8}}-\frac{\sqrt{2}+1}{3+\sqrt{8}}\)
\(=\frac{\left(\sqrt{2}-1\right)\left(3+\sqrt{8}\right)}{\left(3-\sqrt{8}\right)\left(3+\sqrt{8}\right)}-\frac{\left(\sqrt{2}+1\right)\left(3-\sqrt{8}\right)}{\left(3+\sqrt{8}\right)\left(3-\sqrt{8}\right)}\)
\(=\left(3\sqrt{2}+\sqrt{16}-3-\sqrt{8}\right)-\left(3\sqrt{2}-\sqrt{16}+3-\sqrt{8}\right)\)
\(=3\sqrt{2}+4-3-\sqrt{8}-3\sqrt{2}+4-3+\sqrt{8}\)
\(=8-6=2\)là số tự nhiên