\(^4\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2019

Dạng 1:

a) \(x^4+y^2-2x^2y=\left(x^2-y\right)^2\)

b) \(\left(2a+b\right)^2-\left(2b+a\right)^2\)

\(=\left(2a+b-2b-a\right)\left(2a+b+2b+a\right)\)

\(=\left(a-b\right)\left(3a+3b\right)\)

\(=3\left(a-b\right)\left(a+b\right)\)

c) \(\left(x^2+1\right)^2-4x^2\)

\(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)\)

\(=\left(x-1\right)^2\cdot\left(x+1\right)^2\)

d) \(a^3+b^3+c^3-3abc\)

\(=a^3+3a^2b+3ab^2+b^3+c^3-3abc-3a^2b-3ab^2\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ca-bc-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

15 tháng 8 2019

Dạng 2:

a) \(\left(7n-2\right)^2-\left(2n-7\right)^2\)

\(=\left(7n-2-2n+7\right)\left(7n-2+2n-7\right)\)

\(=\left(5n+5\right)\left(9n-9\right)\)

\(=45\cdot\left(n+1\right)\cdot\left(n-1\right)⋮3;5;9\) chứ không chia hết cho 7

Bạn xem lại đề.

b) \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

\(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên tích đó chia hết cho 2 và 3.

Mặt khác \(\left(2;3\right)=1\)

Do đó \(n\left(n-1\right)\left(n+1\right)⋮2.3=6\) ( đpcm

15 tháng 10 2020

a , \(-q^3+12q^2x-48qx^2+64x^3\)

 \(=-\left(q^3-12q^2x+48qx^2-64x^3\right)\)

\(=\)\(-\left(q-4x\right)^3\)

b , x+ 2xy - y- 9 

= - ( x2 - 2xy + y2 ) - 9

= - ( x - y )2 - 9

= ( - x + y - 3 ) ( x - y + 3 )

3 , 1 - m2 + 2mn - n2

= 1 - ( m2 - 2mn + n2 )

= 1 - ( m - n )2

= ( 1 - m + n ) ( 1 + m - n )

4 , x3 - 8 + 6a2 - 12a

  = x3 +  6a2 - 12a + 8 

  = x3 + 6a- 12a + 4 + 4

  = x3 + ( 6a2 - 12a + 4 ) + 4

  = x3 + ( 3a - 2 )2 + 4

  = ( x + 3a - 2 + 2 ) ( x2 + 3a + 2 + 2 )

( Mai làm tiếp mấy ý sau '-' muộn rồi ~ )

16 tháng 10 2020

5 , x2 - 2xy + y2 - xz - yz

  = ( x2 - 2xy + y2 ) - ( xz + yz )

  = (  x - y )2 - z ( x + y )

  = ( x - y ) 2 - z ( x - y )

  = ( x - y ) ( x - y - z )

6 , x2 - 4xy + 4y - z2 + 4z - 4t2

 =(  x2 - 4xy + 4y ) - (z- 4z +4 ) . t2

 = ( x - y )2 - ( z - 2  )2 . t2

 = ( x - y - z - 2 ) ( x - y + z - 2 ) t2

7 , 25 - 4x2 - 4xy - y2

  = 25 + ( - 4x2 - 4xy + y2 )

  = 25 + ( 2x - y )2

  = ( 5 + 2x - y ) ( 5 + 2x + y )

8 ,

       x3 + y3 + z3 - 3xyz

    = (x+y)3 - 3xy (x  - y ) + z3 - 3xyz 
    = [ ( x + y)3 + z] - 3xy ( x + y + z ) 
    = ( x + y + z )3 - 3z ( x + y )( x + y + z ) - 3xy ( x - y - z ) 
    = ( x + y + z )[( x + y + z )2 - 3z ( x + y ) - 3xy ] 
    = ( x + y + z )( x2 + y2 + z2 + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy) 
    = ( x + y + z)(x2 + y2 + z2 - xy - xz - yz)

Bài 1: Rút gọn biểu thức a. (5+3x)(x-2)-3(x+3)\(^2\) b. (x\(^2\)-1)(x+2)-(x-2)(x\(^2\)+2x+4) Bài 2: Phân tích đa thức thành nhân tử a. (x+y)\(^2\)+(x\(^2\)-y\(^2\)) b. -4x\(^2\)+25+4xy-y\(^2\) c. x\(^2\)-2xy+y\(^2\)-z\(^2\)+2zt-t\(^2\) d. x\(^2\)-x-12 e. 2x\(^2\)+x-6 f. 3x\(^2\)+2x-5 g. x\(^3\)+2x\(^2\)-3 Bài 3: Tìm GTNN của biểu thức A,B và GTLN của biểu thức M,N a) A= x\(^2\)+4x+9 b) B= 2x\(^2\)-20x+53 c) M= 1+6x-x\(^2\) d) N=...
Đọc tiếp

Bài 1: Rút gọn biểu thức

a. (5+3x)(x-2)-3(x+3)\(^2\)

b. (x\(^2\)-1)(x+2)-(x-2)(x\(^2\)+2x+4)

Bài 2: Phân tích đa thức thành nhân tử

a. (x+y)\(^2\)+(x\(^2\)-y\(^2\))

b. -4x\(^2\)+25+4xy-y\(^2\)

c. x\(^2\)-2xy+y\(^2\)-z\(^2\)+2zt-t\(^2\)

d. x\(^2\)-x-12

e. 2x\(^2\)+x-6

f. 3x\(^2\)+2x-5

g. x\(^3\)+2x\(^2\)-3

Bài 3: Tìm GTNN của biểu thức A,B và GTLN của biểu thức M,N

a) A= x\(^2\)+4x+9

b) B= 2x\(^2\)-20x+53

c) M= 1+6x-x\(^2\)

d) N= -x\(^2\)-y\(^2\)+xy+2x+2y

Bài 4: Tìm số

a) Tìm a để x\(^4\)-x\(^3\)+6x\(^2\)-x+a chia hết cho x\(^2\)-x+5

b) Tìm giái trị nguyên của n để 3n\(^3\)+10n\(^2\)-5 chia hết cho 3n+1

Bài 8: Tính giá trị của biểu thức

a) A= x\(^3\)-y\(^3\)-3xy với x-y=1

b) B= x\(^4\)+y\(^4\) với x,y là các số dương thỏa xy= 5, x\(^2\)+y\(^2\)=18

c) C= x\(^3\)-3xy(x-y)-y\(^3\)-x\(^2\)+2xy-y\(^2\) với x-y=7

d) D=x\(^{2013}\)-12x\(^{2012}\)+12x\(^{2011}\)-...+12x\(^3\)-12x\(^2\)+12x-2013 với x

Ai biết bài nào thì giải hộ em với ạ TvT

2
21 tháng 10 2019

Bài 3:

a) ta có: \(A=x^2+4x+9\)

\(=x^2+4x+4+5=\left(x+2\right)^2+5\)

Ta có: \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi

\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy: GTNN của đa thức \(A=x^2+4x+9\) là 5 khi x=-2

b) Ta có: \(B=2x^2-20x+53\)

\(=2\left(x^2-10x+\frac{53}{2}\right)\)

\(=2\left(x^2-10x+25+\frac{3}{2}\right)\)

\(=2\left[\left(x-5\right)^2+\frac{3}{2}\right]\)

\(=2\left(x-5\right)^2+2\cdot\frac{3}{2}\)

\(=2\left(x-5\right)^2+3\)

Ta có: \(\left(x-5\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-5\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-5\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi

\(2\left(x-5\right)^2=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)

Vậy: GTNN của đa thức \(B=2x^2-20x+53\) là 3 khi x=5

c) Ta có : \(M=1+6x-x^2\)

\(=-x^2+6x+1\)

\(=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-6x+9-10\right)\)

\(=-\left[\left(x-3\right)^2-10\right]\)

\(=-\left(x-3\right)^2+10\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-3\right)^2+10\le10\forall x\)

Dấu '=' xảy ra khi

\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy: GTLN của đa thức \(M=1+6x-x^2\) là 10 khi x=3

21 tháng 10 2019

Bài 2:

a) \(\left(x+y\right)^2+\left(x^2-y^2\right)\)

\(=\left(x+y\right)^2+\left(x-y\right).\left(x+y\right)\)

\(=\left(x+y\right).\left(x+y+x-y\right)\)

\(=\left(x+y\right).2x\)

c) \(x^2-2xy+y^2-z^2+2zt-t^2\)

\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)

\(=\left(x-y\right)^2-\left(z-t\right)^2\)

\(=\left[x-y-\left(z-t\right)\right].\left(x-y+z-t\right)\)

\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)

Chúc bạn học tốt!

27 tháng 10 2021

helpppppp

19 tháng 7 2020

Bài 1 :

b, Ta có : \(4x^2-25-\left(2x-5\right)\left(2x+7\right)\)

\(=\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)\)

\(=\left(2x-5\right)\left(2x+5-2x-7\right)\)

\(=-2\left(2x-5\right)\)

c, Ta có : \(x^3+27+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)

\(=x\left(x+3\right)\left(x-2\right)\)

Bài 2 :

a, Để \(x^3+3x^2+3x-2⋮x+1\)

<=> \(x^3+1+3x^2+3x-3⋮x+1\)

<=> \(\left(x+1\right)^3-3⋮x+1\)

Ta thấy : \(\left(x+1\right)^3⋮x+1\)

<=> \(-3⋮x+1\)

<=> \(x+1\inƯ_{\left(3\right)}\)

<=> \(x+1=\left\{1,-1,3,-3\right\}\)

<=> \(x=\left\{0,-2,2,-4\right\}\)

Vậy ...

b, Để \(2x^2+x-7⋮x-2\)

<=> \(2x^2-8x+8+9x-15⋮x-2\)

<=> \(2\left(x-2\right)^2+9x-15⋮x-2\)

Ta thấy : \(2\left(x-2\right)^2⋮x-2\)

<=> \(9x-15⋮x-2\)

<=> \(9x-18+3⋮x-2\)

Ta thấy : \(8\left(x-2\right)⋮x-2\)

<=> \(3⋮x-2\)

<=> \(x-2\inƯ_{\left(3\right)}\)

<=> \(x-2=\left\{1,-1,3,-3\right\}\)

<=> \(x=\left\{3,1,5,-1\right\}\)

Vậy ...

10 tháng 9 2017

Bài 3 :

a ) \(x\left(x-1\right)+x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy...........

b ) \(3\left(x-3\right)-4x+12=0\)

\(\Leftrightarrow3\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\) \(\left(x-3\right)=0\Rightarrow x=3\)

Vậy............

Các câu sau tương tự

10 tháng 9 2017

Đăng từ từ thôi

22 tháng 8 2018

a) 2x2 + 4x + xy + 2y

= (2x2 + xy) + (4x + 2y)

= x(2x + y) + 2(2x + y)

= (x + 2)(2x + y)

22 tháng 8 2018

b) x2 + xy - 7x - 7y

= x(x + y) - 7(x + y)

= (x - y)(x + y)

22 tháng 8 2018

xin lỗi bài này mình không biết

Phân tích đa thức thành nhân tử:

a) Ta có: \(3x^2-8xy+5y^2\)

\(=3x^2-3xy-5xy+5y^2\)

\(=3x\left(x-y\right)-5y\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-5y\right)\)

b) Ta có: \(8xy^3+x\left(x-y\right)^3\)

\(=x\left[8y^3-\left(x-y\right)^3\right]\)

\(=x\left[2y-\left(x-y\right)\right]\left[4y^2+2y\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=x\left(2y-x+y\right)\left(4y^2+2xy-2y^2+x^2-2xy+y^2\right)\)

\(=x\left(3y-x\right)\left(3y^2+x^2\right)\)

c) Ta có: \(2x\left(x-3\right)-x+3\)

\(=2x\left(x-3\right)-\left(x-3\right)\)

\(=\left(x-3\right)\left(2x-1\right)\)

d) Ta có: \(x^4-4x^3+4x^2\)

\(=x^2\left(x^2-4x+4\right)\)

\(=x^2\cdot\left(x-2\right)^2\)

e) Ta có: \(4x^2+4xy-4z^2+y^2-4z-1\)

\(=\left(4x^2+4xy+y^2\right)-\left(4z^2+4z+1\right)\)

\(=\left(2x+y\right)^2-\left(2z+1\right)^2\)

\(=\left(2x+y-2z-1\right)\left(2x+y+2z+1\right)\)

f) Ta có: \(x^2-2xy+y^2-x+y-6\)

\(=\left(x-y\right)^2-\left(x-y\right)-6\)

\(=\left(x-y\right)^2-3\left(x-y\right)+2\left(x-y\right)-6\)

\(=\left(x-y\right)\left(x-y-3\right)+2\left(x-y-3\right)\)

\(=\left(x-y-3\right)\left(x-y+2\right)\)

g) Ta có: \(x^2\left(x+3\right)^2-\left(x+3\right)^2-\left(x^2-1\right)\)

\(=x^2\left(x^2+6x+9\right)-\left(x^2+6x+9\right)-x^2+1\)

\(=\left(x^2-6x+9\right)\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2-6x+9-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2-6x+8\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-4\right)\)

14 tháng 11 2016

1.

a) \(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)=2x^2-8x+x^2+x-2=x^2-7x-2\)

b) \(\left(x-3\right)^2-\left(x-2\right)\left(x^2+2x+4\right)=x^2-6x+9-x^3+8=-x^3+x^2-6x+17\)

2.

a) \(x^2y+xy^2-3x+3y=xy\left(x+y\right)-3\left(x-y\right)=???\)

b) \(x^3+2x^2y+xy^2-16x=x\left(x^2+2xy+y^2-16\right)=x\left[\left(x+y\right)^2-16\right]=\)làm tiếp chắc dễ

3. 

\(\frac{x^4?2x^3+4x^2+2x+3}{x^2+1}\) Giữa x^4 và 2x^3 (vị trí dấu ? là dấu + hay -)

4) \(A=x^2-3x+4=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)

\(A\ge\frac{7}{4}\)

Vậy GTNN của A là 7/4

2 tháng 9 2018

\(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)\)

\(=2x^2-8x+x^2+2x-x-2\)

\(=3x^2-7x-2\)

hk tốt