\(^5\)(x+1)-9x(x+1)

b)4x

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

1.a)\(3x^5\left(x+1\right)-9x\left(x+1\right)\)

\(=3x\left(x+1\right)\left(x^4-3\right)\)

b)\(4x^2\left(x-2y\right)-20x\left(2y-x\right)\)

\(=4x^2\left(x-2y\right)+20x\left(x-2y\right)\)

\(=4x\left(x-2y\right)\left(x+5\right)\)

c)\(3x^2y^2\left(a-b+c\right)+2xy\)

\(=xy\left[3xy\left(a-b+c\right)+2\left(b-a-c\right)\right]\)

\(=xy\left[3xy\left(a-b+c\right)-2\left(a-b+c\right)\right]\)

\(=xy\left(3xy-2\right)\left(a-b+c\right)\)

d)\(\left(a-b\right)^2-\left(b-a\right)\)

\(=\left(a-b\right)^2+\left(a-b\right)\)

\(=\left(a-b\right)\left(a-b+1\right)\)

2.a) \(x^3+4x=0\)

\(\Leftrightarrow x\left(x^2+4\right)=0\)

\(\Rightarrow x=0\)(vì x2+4>0)

b)\(x\left(x-6\right)+10\left(6-x\right)=0\)

\(\Leftrightarrow x\left(x-6\right)-10\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=10\end{matrix}\right.\)

c)\(\left(x+2\right)^2=x+2\)

\(\Leftrightarrow\left(x+2\right)^2-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+2-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)

d)\(x\left(x+7\right)=4x+28\)

\(\Leftrightarrow x\left(x+7\right)=4\left(x+7\right)\)

\(\Leftrightarrow x\left(x+7\right)-4\left(x+7\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-7\end{matrix}\right.\)

15 tháng 7 2020

a, \(3x^2\left(x+1\right)-2\left(x+1\right)\)\(=\left(x+1\right)\left(3x^3-2\right)\)

b, \(4x^2\left(x-2y\right)-20x\left(2y-x\right)\)

\(=4x^2\left(x-2y\right)-20x\left[-\left(x-2y\right)\right]\)

\(=4x^2\left(x-2y\right)+20x\left(x-2y\right)\)

\(=\left(4x^2+20x\right)\left(x-2y\right)\)

\(=\left(4x^2+20x\right)\left(x-2y\right)\)

\(=4x\left(x+5\right)\left(x-2y\right)\)

c, \(3x^2y^2\left(a-b+c\right)+2xy\left(b-a-c\right)\)

\(=3x^2y^2\left(a-b+c\right)+2xy\left[-\left(a-b+c\right)\right]\)

\(=3x^2y^2\left(a-b+c\right)-2xy\left(a-b+c\right)\)

\(=\left(3x^2y^2-2xy\right)\left(a-b+c\right)\)

\(=xy\left(3xy-2\right)\left(a-b+c\right)\)

d, \(4x^2-4x+1\)\(=\left(2x\right)^2-2.2x.1+1^2\)\(=\left(2x-1\right)^2\)

j, \(16x^2+24xy+9y^2\)

\(=\left(4x\right)^2+2.4x.3y+\left(3y\right)^2\)

\(=\left(4x-3y\right)^2\)

g, \(x^2-64y^2\)\(=x^2-\left(8y\right)^2\)\(=\left(x-8y\right)\left(x+8y\right)\)

Câu 2 nha

\(a,x^4+2x^3+x^2\)

\(=x^2\left(x^2+2x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(c,x^2-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)

Câu 1: 

a: \(C=a^2+b^2=\left(a+b\right)^2-2ab=23^2-2\cdot132=265\)

b: \(D=x^3+y^3+3xy\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)

\(=1-3xy+3xy=1\)

23 tháng 12 2018

1 , 

\(b,x^2-2x=0\)

\(\Rightarrow x\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\Rightarrow x=2\end{cases}}\)

KL :..

\(2,x^2-y^2=\left(x+y\right)\left(x-y\right)\)

\(b,4x^2-4x+1=\left(2x\right)^2-2.2x+1\)

\(=\left(2x-1\right)^2\)

Bài 1: Phân tích đa thức thành nhân tử: a) \(2x\left(x+1\right)+2\left(x+1\right)\) b) \(y^2\left(x^2+y\right)-zx^2-zy\) c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\) d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\) e) \(x^2-6xy+9y^2\) f) \(x^3+6x^2y+12xy^2+8y^3\) g) \(x^3-64\) h) \(125x^3+y^6\) k) \(0,125\left(a+1\right)^3-1\) t) \(x^2-2xy+y^2-xz+yz\) q) \(x^2-y^2-x+y\) p) \(a^3x-ab+b-x\) đ)...
Đọc tiếp

Bài 1: Phân tích đa thức thành nhân tử:

a) \(2x\left(x+1\right)+2\left(x+1\right)\)

b) \(y^2\left(x^2+y\right)-zx^2-zy\)

c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\)

d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)

e) \(x^2-6xy+9y^2\)

f) \(x^3+6x^2y+12xy^2+8y^3\)

g) \(x^3-64\)

h) \(125x^3+y^6\)

k) \(0,125\left(a+1\right)^3-1\)

t) \(x^2-2xy+y^2-xz+yz\)

q) \(x^2-y^2-x+y\)

p) \(a^3x-ab+b-x\)

đ) \(3x^2\left(a+b+c\right)+36xy\left(a+b+c\right)+108y^2\left(a+b+c\right)\)

l) \(x^2-x-6\)

i) \(x^4+4x^2-5\)

m) \(x^3-19x-30\)

j) \(x^4+x+1\)

y) \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

o) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

ê) \(4a^2b^2-\left(a^2+b^2+c^2\right)^2\)

w) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)

z) \(\left(x^2-8\right)^2+36\)

u) \(81x^4+4\)

Bài 2 : Tìm x

a)\(\left(2x-1\right)^2-25=0\)

b) \(8x^3-50x=0\)

c) \(\left(x-2\right)\left(x^2+2+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

d) \(3x\left(x-1\right)+x-1=0\)

e) \(2\left(x+3\right)-x^2-3x\) =0

f) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

5
12 tháng 10 2017

Bài 1 :

a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)

b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)

c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)

d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)

e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)

12 tháng 10 2017

Bài 1 :

f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)

g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)

h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)

10 tháng 9 2017

Bài 3 :

a ) \(x\left(x-1\right)+x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy...........

b ) \(3\left(x-3\right)-4x+12=0\)

\(\Leftrightarrow3\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\) \(\left(x-3\right)=0\Rightarrow x=3\)

Vậy............

Các câu sau tương tự

10 tháng 9 2017

Đăng từ từ thôi

13 tháng 10 2019

\(e,-5x+x^2-14\)

\(=x^2+2x-7x-14\)

\(=x\left(x+2\right)-7\left(x+2\right)\)

\(=\left(x+2\right)\left(x-7\right)\)

\(f,x^3+8+6x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+2x+4\right)+6x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+8x+4\right)\)

\(g,15x^2-7xy-2y^2\)

\(=15x^2+3xy-10xy-2y^2\)

\(=3\left(5x+y\right)-2y\left(5x+y\right)\)

\(=\left(5x+y\right)\left(3-2y\right)\)

\(h,3x^2-16x+5\)

\(=3x^2-x-15x+5\)

\(=x\left(3x-1\right)+5\left(3x-1\right)\)

\(=\left(3x-1\right)\left(x+5\right)\)

13 tháng 10 2019

\(a,x^3+2x^2y+xy^2=x\left(x^2+2xy+y^2\right)\)

\(=x\left(x+y\right)^2\)

\(b,4x^2-9y^2+4x-6y\)

\(=4x^2+4x+1-\left(9y^2+6y+1\right)\)

\(=\left(2x+1\right)^2-\left(3y+1\right)^2\)

\(=\left(2x-3y\right)\left(2x+3y+2\right)\)

\(c,-x^2+5x+2xy-5y-y^2\)

\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)

\(=-\left(x-y\right)^2+5\left(x-y\right)\)

\(=\left(x-y\right)\left(y-x+5\right)\)

\(d,x^2+4x-12\)

\(=x^2-2x+6x-12\)

\(=x\left(x-2\right)+6\left(x-2\right)\)

\(=\left(x-2\right)\left(x+6\right)\)

9 tháng 7 2018

Bài 1 :

\(e,x^2+2xy+y^2-2x-2y+1\)

\(=\left(x+y-1\right)^2\)

Bài 2:

\(b,2x^3+3x^2+2x+3=0\)

\(\Leftrightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)

\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow2x+3=0\left(x^2+1>0\right)\)

\(\Leftrightarrow x=-\dfrac{3}{2}\)