Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)x2-10x+9
=x2-x-9x+9
=x(x-1)-9(x-1)
=(x-9)(x-1)
b)x2-2x-15
=x2+3x-5x-15
=x(x+3)-5(x+3)
=(x-5)(x+3)
c)3x2-7x+2
=3x2-x-6x+2
=x(3x-1)-2(3x-1)
=(x-2)(3x-1)x^3-12+x^2
d)x3-12+x2
=x3+3x2+6x-2x2-6x-12
=x(x2+3x+6)-2(x2+3x+6)
=(x-2)(x2+3x+6)
1. C. \(16x^2\left(x-y\right)\)\(-10y\left(y-1\right)\)\(=-2\left(y-x\right)\)\(\left(8x^2+5y\right)\)
2. C. \(\left(x-y\right)\left(x-y-3\right)\)
3. D. \(\left(x-2\right)\left(x+1\right)\)
4. C. \(y\left(x-2\right)\)\(5x\left(x-3\right)\)
5. D. \(3\left(x-2y\right)\)
1. Trong các kết quả sau kết quả nào sai
A. -17x^3y-34x^2y^2+51xy^3=17xy(x^2+2xy-3y^2)
B. x(y-1) +3(y-1)= -(1-y)(x+3)
C. 16x^2(x-y)-10y(y-1)=-2(y-x)(8x^2+5y)
2. Đa thức (x-y)^2+3(y-x) được phân tích thành nhân tử là:
A. (x+y)(x-y+3)
B. (x-y)(2x-2y+3)
C. (x-y)(x-y-3)
D. Cả 3 câu đều sai
3. Kết quả phân tích đa thức x(x-2)+(x-2) thành nhân tử
A. (x-2)x
B. (x-2)^2.x
C. x(2x-4)
D. (x-2)(x+1)
4. Kết quả phân tích 5x^2(xy-2y)-15x(xy-2y) thành nhân tử
A. (xy-2y)(5x^2-15x^2)
B. y(x-2)(5x^2-15x^2)
C. y(x-2)5x(x-3)
D. (xy-2y)5x(x-3)
5. Kết quả phân tích đa thức 3x-6y thành nhân tử là
A. 3(x-6y)
B. 3(3x-y)
C. 3(3x-2y)
D. 3(x-2y)
(x - 4)(x2 + 4x + 16) - x(x2 - 6) = 2
x3 - 64 - x3 + 6x = 2
6x = 2 + 64
6x = 66
x = 66 : 6
x = 11
x3 - 27 + 3x(x - 3)
= (x - 3)(x2 + 3x + 9) + 3x(x - 3)
= (x - 3)(x2 + 3x + 9 + 3x)
= (x - 3)(x2 + 6x + 9)
= (x - 3)(x + 3)2
5x3 - 7x2 + 10x - 14
= 5x(x2 + 2) - 7(x2 + 2)
= (x2 + 2)(5x - 7)
B1:
a, \(4x^2+y\left(y-4x\right)-9\)
\(=4x^2+y^2-4xy-9\)
\(=\left(x-y\right)^2-3^2\)
\(=\left(x-y+3\right)\left(x-y-3\right)\)
1.
b) \(a^2-b^2+a-b\)
\(=\left(a^2-b^2\right)+\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b+1\right)\)
a.\(x^2y-xz+z-y=\)\(\left(x^2y-y\right)-\left(xz-z\right)=\)\(y\left(x^2-1\right)-z\left(x-1\right)\)
\(y\left(x+1\right)\left(x-1\right)-z\left(x-1\right)\)=\(\left(x-1\right)\left(xy+y-z\right)\)
b.\(x^4-x^3+x^2-1=x^3\left(x-1\right)+\left(x+1\right)\left(x-1\right)\)=\(\left(x-1\right)\left(x^3+x+1\right)\)
c.\(x^4-x^2+10x-25=x^4-\left(x^2-10x+25\right)\)=\(\left(x^2\right)^2-\left(x-5\right)^2=\left(x^2+x-5\right)\left(x^2-x+5\right)\)
a)x2-4x2+8x-8
=x2(1-4)+8x-8
=-3x2+8x-8
=-(3x2-8x+8)
b)a2+b2-a2b2+ab-a-b
=(1-a)(b-1)(ab+b+a)
c)Chịu
d)x(x+1)2 + x(x-5) - 5(x-1)2
=x3+2x2+x+x2-5x-5x2+10x-5
=x3-2x2+6x-5
=x3-x2+5x-x2-x+5
=x(x2-x+5)-1(x2-x+5)
=(x-1)(x2-x+5)
1: a) \(x^3+10x^2+15x-26\)
\(=\left(x^3-x^2\right)+\left(11x^2-11x\right)+\left(26x-26\right)\)
\(=x^2\left(x-1\right)+11x\left(x-1\right)+26\left(x-1\right)\)
\(=\left(x^2+11x+26\right)\left(x-1\right)\)
b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\) (1)
Đặt \(x^2+5x+5=y\)
Khi đó (1) trở thành: \(\left(y-1\right)\left(y+1\right)\)
Bài này thiếu đề à bn
2: Ta có: \(x^2+x=6\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2-2x+3x-6=0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy \(x\in\left\{-3;2\right\}\) \(\)