K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

Bài 1 :

Câu a : \(a^3+a^2b-a^2c-abc\)

\(=a\left(a^2+ab-ac-bc\right)\)

\(=a\left[a\left(a+b\right)-c\left(a+b\right)\right]\)

\(=a\left(a+b\right)\left(a-c\right)\)

Câu b : \(x^2+2xy+y^2-xz-yz\)

\(=\left(x+y\right)^2-z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y-z\right)\)

Câu c : \(4-x^2-2xy-y^2\)

\(=4-\left(x^2+2xy+y^2\right)\)

\(=2^2-\left(x+y\right)^2\)

\(=\left(2-x-y\right)\left(2+x+y\right)\)

Câu d : \(x^2-2xy+y^2-z^2\)

\(=\left(x-y\right)^2-z^2\)

\(=\left(x-y-z\right)\left(x-y+z\right)\)

19 tháng 7 2018

Bài 2 :

Câu a : \(2x\left(x-3\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(x=-\dfrac{1}{2}\) hoặc \(x=3\)

Câu b : \(3x\left(x+5\right)-6\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(3x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Vậy \(x=-5\) hoặc \(x=2\)

Câu c : \(x\left(x-1\right)+2x-2=0\)

\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy \(x=-2\) hoặc \(x=1\)

Câu d : \(2x^3+3x^2+2x+3=0\)

\(\Leftrightarrow x^2\left(2x+3\right)+\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x\in\varnothing\end{matrix}\right.\)

Vậy \(x=-\dfrac{3}{2}\)

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

1 tháng 11 2018

Bài 1:

a) 2x^2 -3x + 1 = 2x^2 -2x -x +1 = 2x.(x-1) - (x-1) = (x-1).(2x-1)

b) 2x^3y - 2xy^3 - 4xy^2 - 2xy = 2xy.(x^2 - y^2 - 2y -1) = 2xy.[ x^2 - (y^2 + 2y+1)] = 2xy.[x^2 - (y+1)^2]

= 2xy.(x-y-1).(x+y+1)

1 tháng 11 2018

c) (x^2 + x+3).(x^2 + x +5) - 8 = (x^2+x+4-1).(x^2+x+4+1) - 8 = (x^2+x+4)^2 - 1 - 8 = (x^2+x+4)^2 - 3^2

= (x^2+x+4-3).(x^2+x+4+3) = (x^2+x+1).(x^2+x+7)

Bài 2:

a) (x+2).(x^2-2x+4) - (x^3+2x) = 0

x^3 + 8 - x^3 - 2x = 0

8 - 2x = 0

x = 4

b) x^2 - 2x - 8 = 0

x^2 +2x - 4x - 8 = 0

x.(x+2) - 4.(x+2) = 0

(x+2).(x-4) = 0

...

bn tự làm tiếp nha

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)

5 tháng 10 2017

Mk mới lớp 6 thui 

5 tháng 10 2017

ban nao nhanh len giup mk khong 

a: \(2x^3+x^2-13x+6\)

\(=2x^3-4x^2+5x^2-10x-3x+6\)

\(=\left(x-2\right)\left(2x^2+5x-3\right)\)

\(=\left(x-2\right)\left(2x^2+6x-x-3\right)\)

\(=\left(x-2\right)\left(x+3\right)\left(2x-1\right)\)

b: \(2x^2+y^2-6x+2xy-2y+5=0\)

\(\Leftrightarrow x^2+2xy+y^2+x^2-4x+4-2x-2y+1=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-2\right)^2-2\left(x+y\right)+1=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(x+y-1\right)^2=0\)

=>x-2=0 và x+y-1=0

=>x=2 và y=-1

15 tháng 9 2018

a) x3 + 2x2 + x

= x3 + x2 + x2 + x

= x2 ( x + 1 ) + x ( x + 1 )

= ( x2 + x ) ( x + 1 )

15 tháng 9 2018

a)=x(x2+2x)

b)=x(x2+2xy+y2-9)

d)=x(x2-3x+2)

26 tháng 10 2020

Bài 1

1) 4x - x2 - 4 = 0

⇔ -( x2 - 4x + 4 ) = 0

⇔ -( x - 2 )2 = 0

⇔ x - 2 = 0

⇔ x = 2

2) 4( x - 1 )2 - ( 5 - 2x )2 = 0

⇔ 22( x - 1 )2 - ( 5 - 2x )2 = 0

⇔ ( 2x - 2 )2 - ( 5 - 2x ) = 0

⇔ ( 2x - 2 - 5 + 2x )( 2x - 2 + 5 - 2x ) = 0

⇔ ( 4x - 7 ).3 = 0

⇔ 4x - 7 = 0

⇔ x = 7/4

3) 9( x - 2 )2 - 4( 3 - x )= 0

⇔ 32( x - 2 )2 - 22( x - 3 )2 = 0

⇔ ( 3x - 6 )2 - ( 2x - 6 )2 = 0

⇔ ( 3x - 6 - 2x + 6 )( 3x - 6 + 2x - 6 ) = 0

⇔ x( 5x - 12 ) = 0

⇔ x = 0 hoặc 5x - 12 = 0

⇔ x = 0 hoặc x = 12/5

4) x2 - 6x + 5 = 0

⇔ x2 - 5x - x + 5 = 0

⇔ x( x - 5 ) - ( x - 5 ) = 0

⇔ ( x - 5 )( x - 1 ) = 0

⇔ x - 5 = 0 hoặc x - 1 = 0

⇔ x = 5 hoặc x = 1

26 tháng 10 2020

Bài 2.

1) x2 - z2 + y2 - 2xy

= ( x2 - 2xy + y2 ) - z2

= ( x - y )2 - z2

= ( x - y - z )( x - y + z )

2) a3 - ay - a2x + xy

= ( a3 - a2x ) - ( ay - xy )

= a2( a - x ) - y( a - x )

= ( a - x )( a2 - y )

3) 2xy + 3z + 6y + xz

= ( 2xy + 6y ) + ( xz + 3z )

= 2y( x + 3 ) + z( x + 3 )

= ( x + 3 )( 2y + z )

4) x2 + 2xz + 2xy + 4yz

= ( x2 + 2xy ) + ( 2xz + 4yz )

= x( x + 2y ) + 2z( x + 2y )

= ( x + 2y )( x + 2z )

5) ( x + y + z )3 - x3 - y3 - z3

= x3 + y3 + z3 + 3( x + y )( y + z )( x + z ) - x3 - y3 - z3

= 3( x + y )( y + z )( x + z )