K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

c: \(x^7+x^2+1\)

\(=x^7+x^6+x^5-x^6-x^5-x^4+x^4+x^3+x^2-x^3+1\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

g: \(4x^4+81\)

\(=\left(2x^2\right)^2+9^2\)

\(=\left(2x^2\right)^2+36x^2+9^2-36x^2\)

\(=\left(2x^2+9\right)^2-36x^2\)

\(=\left(2x^2+6x+9\right)\left(2x^2-6x+9\right)\)

h: \(64x^4+y^4\)

\(=64x^4+16x^2y^2+y^4-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-16x^2y^2\)

\(=\left(8x^2-4xy+y^2\right)\left(8x^2+4xy+y^2\right)\)

3 tháng 11 2017

a)x4+5x3+10x-4

=x4+2x2+5x3+10x-2x2-4

=x2(x2+2)+5x(x2+2)-2(x2+2)

=(x2+5x-2)(x2+2)

3 tháng 11 2017

b)x3+y3+z3-3xyz

= (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz).

1 tháng 8 2017

A=  x+ 64

A= (x2)+ 2.x2.8 +82  - (2.x.8)

A=(x2+8)2 -16x2

A =(x2+8+4x).(x2+8-4x)

-

G=(x2+y2+z2)2        (có sẵn hdt rồi mak_)

4 tháng 8 2017
Câu E = (a+b)^3 + 3(a+b)^c + 3(a+b)c^2 + c^3 -a^3 -b^3 -c^3 =a^3 + 3a^2b + 3ab^2 + b^3 + 3c(a+b)(a+b+c)-a^3-b^3 = 3a^2b + 3ab^2 + 3c(a+b)(a+b+c) = 3ab(a+b)+3c(a+b)(a+b+c) = 3(a+b)[ab+c(a+b+c)] = 3(a+b)(ab+ac+bc+c^2) = 3(a+b)[a(b+c)+c(b+c)] = 3(a+b)(b+c)(a+c) Thông cảm nk, mk làm a,b,c mất rồi
16 tháng 10 2020

a, \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)

\(=\left(x^2-x+9\right)\left(x-3\right)\)

b, \(x^4-2x^3+2x-1=x^4-x^3-x^3+x^2-x^2+x-1=\left(x^3-x^2-x+1\right)\left(x-1\right)\)

\(=\left(x-1\right)^3\left(x+1\right)\)

...

NV
25 tháng 10 2020

a/

\(=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)

b/

\(=x^3+3x^2y+3xy^2+y^3-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)

c/

Đề sai, câu này ko phân tích được

d/

\(=a^3\left(a^2+1\right)-\left(a^2+1\right)\)

\(=\left(a^3-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)\left(a^2+1\right)\left(a^2+a+1\right)\)

NV
25 tháng 10 2020

e.

\(=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

f.

\(=4x^4+4x^2y^2+y^4-4x^2y^2\)

\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2\)

\(=\left(2x^2-2xy+y^2\right)\left(2x^2+2xy+y^2\right)\)

g.

\(=81x^4+36x^2+4-36x^2\)

\(=\left(9x^2+2\right)^2-\left(6x\right)^2\)

\(=\left(9x^2-6x+2\right)\left(9x^2+6x+2\right)\)

9 tháng 8 2017

a, 7x^3 + 5 ( x - y )^2 v- 7y^3
= 7 ( x^3 - y^3 ) + 5 ( x-y )^2
= 7 ( x - y )^3 + 5 ( x-y ) ^2
= [ 7 ( x- y ) + 5 ] ( x-y) ^2

1. Dùng phương pháp hệ số bất định : a) 4x4 + 4x3 + 5x2 + 2x + 1 ; b) x4 - 7x3 + 14x2 - 7x + 1 ; c) x4 - 8x + 63 ; d) (x + 1)4 + (x2 + x + 1)2. 2. a) x8 + 14x4 + 1 ; b) x8 + 98x4 + 1. Phân tích các đa thức sau thành nhân tử (từ bài 7 đến bài 16) : 1. a) 6x2 – 11x +...
Đọc tiếp

1. Dùng phương pháp hệ số bất định :

a) 4x4 + 4x3 + 5x2 + 2x + 1 ; b) x4 - 7x3 + 14x2 - 7x + 1 ;

c) x4 - 8x + 63 ; d) (x + 1)4 + (x2 + x + 1)2.

2. a) x8 + 14x4 + 1 ; b) x8 + 98x4 + 1.

Phân tích các đa thức sau thành nhân tử (từ bài 7 đến bài 16) :

1. a) 6x2 – 11x + 3 ; b) 2x2 + 3x – 27 ; c) x2 – 10x + 24 ;

d) 49x2 + 28x – 5 ; e) 2x2 – 5xy – 3y2.

2. a) x3 – 2x + 3 ; b) x3 + 7x – 6 ; c) x3 – 5x + 8x – 4 ;

d) x3 – 9x2 + 6x + 16 ; e) x3 + 9x2 + 6x – 16 ; g) x3 – x2 + x – 2 ;

h) x3 + 6x2 – x – 30 ; i) x3 – 7x – 6 (giải bằng nhiều cách).

3. a) 27x3 + 27x +18x + 4 ; b) 2x3 + x2 +5x + 3 ; c) (x2 – 3)2 + 16.

4. a) (x2 + x)2 - 2(x2 + x) - 15 ; b) x2 + 2xy + y2 - x - y - 12 ;

c) (x2 + x + 1)(x2 + x + 2) - 12 ;

5. a) (x + a)(x + 2a)(x + 3a)(x + 4a) + a4 ;

b) (x2 + y2 + z2)(x + y + z)2 + (xy + yz + zx)2 ;

c) 2(x4 + y4 + z4) - (x2 + y2 + z2)2 - 2(x2 + y2 + z2)(x + y + z)2 + (x + y + z)4.

6. (a + b + c)3 - 4(a3 + b3 + c3) - 12abc bằng cách đổi biến : đặt a + b = m và a - b = n.

7. a) 4x4 - 32x2 + 1 ; b) x6 + 27 ;

c) 3(x4 + x+2+ + 1) - (x2 + x + 1)2 ; d) (2x2 - 4)2 + 9.

8. a) 4x4 + 1 ; b) 4x4 + y4 ; c) x4 + 324.

9. a) x5 + x4 + 1 ; b) x5 + x + 1 ; c) x8 + x7 + 1 ;

d) x5 - x4 - 1 ; e) x7 + x5 + 1 ; g) x8 + x4 + 1.

10. a) a6 + a4 + a2b2 + b4 - b6 ; b) x3 + 3xy + y3 - 1.

Help me!!!!!!!!!!!!!!!!!

1

Bài 1: 

a: \(6x^2-11x+3\)

\(=6x^2-9x-2x+3\)

\(=3x\left(2x-3\right)-\left(2x-3\right)\)

\(=\left(2x-3\right)\left(3x-1\right)\)

b: \(2x^2+3x-27\)

\(=2x^2+9x-6x-27\)

\(=x\left(2x+9\right)-3\left(2x+9\right)\)

\(=\left(2x+9\right)\left(x-3\right)\)

c: \(x^2-10x+24\)

\(=x^2-4x-6x+24\)

\(=x\left(x-4\right)-6\left(x-4\right)\)

\(=\left(x-4\right)\left(x-6\right)\)

d: \(49x^2+28x-5\)

\(=49x^2+28x+4-9\)

\(=\left(7x+2\right)^2-9\)

\(=\left(7x-1\right)\left(7x+5\right)\)

e: \(2x^2-5xy-3y^2\)

\(=2x^2-6xy+xy-3y^2\)

\(=2x\left(x-3y\right)+y\left(x-3y\right)\)

\(=\left(x-3y\right)\left(2x+y\right)\)

24 tháng 7 2018

a)  \(2x^2+3x-5=2x^2-2x+5x-5\)

\(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)

b)  \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3z\left(x+y\right)\left(x+y+z\right)+z^3-x^3-y^3-z^3\)

\(=x^3+y^3+z^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

c)  \(x^4+x^3+x+1=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)=\left(x+1\right)^2\left(x^2-x+1\right)\)

d)  \(x^4-x^3-x^2+1=x^2\left(x-1\right)-\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left(x^2-x-1\right)\)

e)  \(x^4+4x^2-5=\left(x^2+2\right)^2-9=\left(x^2+2+3\right)\left(x^2+2-3\right)=\left(x^2+5\right)\left(x+1\right)\left(x-1\right)\)

4 tháng 8 2019

a) 10x(x - y)2 - 5(x - y)3 = [10x - 5(x - y)](x - y)2 = (10x - 5x + y)(x - y)2 = (5x + y)(x - y)2

b) -x2 - 10x - 25 = -(x2 + 10x + 52) = -(x + 5)2

c) 64x6y4 - 81x2y2 = (8x3y2)2 - (9xy)2 = (8x3y2 + 9xy)(8x3y2 - 9xy)

d) x6 - y6 = (x3)2 - (y3)2 = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy + y2)(x + y)(x2 - xy + y2)

e)1/8x3 - 3/4x2y + 3/2xy2 - y3 = (1/2x)3 - 3.(1/2x)2y + 3.1/2xy2 - y3 = (1/2x - y)3

f) (3x + 1)2 - (x - 1)2 = (3x + 1 + x - 1)(3x + 1 - x + 1) =  4x(2x + 2) = 8x(x + 1)