\(^2\) - 10x - 9y
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2018

Bài 1:

a) \(3x\left(x-y\right)-2y\left(y-x\right)\)

\(=3x\left(x-y\right)+2y\left(x-y\right)\)

\(=\left(x-y\right)\left(3x+2y\right)\)

b) \(x^2-10x-9y^2+25\)

\(=\left(x^2-10x+25\right)-9y^2\)

\(=\left(x-5\right)^2-\left(3y\right)^2\)

\(=\left(x-3y-5\right)\left(x+3y-5\right)\)

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0
6 tháng 9 2016

bài 1 

a) Trong ∆ACD có EA = ED, KA = KC (gt)

nên EK là đường trung bình của ∆ACD

Do đó EK = CD/2

Tương tự KF là đường trung bình của ∆ABC.

Nên KF = AB/2

b) Ta có EF  ≤ EK + KF (bất đẳng thức trong ∆EFK)

Nên EF ≤ EK + KF = CD/2 + AB/2=  (AB +CD)/2

Vậy EF ≤ (AB +CD)/2

1 tháng 9 2017

A B C D E F I K

Xét hình thang ABCD có E là trung điểm của AD ; F là trung điểm của BC nên EF là đường trung bình

\(\Rightarrow EF=\frac{AB+CD}{2};EF\text{//}AB\)

Xét tam giác ADB có EI // AB (EF // AB); AE = ED => EI là đường trung bình

=> \(EI=\frac{1}{2}AB\)

Xét tam giác ACB có FK // AB (EF//AB); BF=FC => FK là đường trung bình

\(\Rightarrow EK=\frac{1}{2}AB\)

Ta có : \(EF=EI+IK+EK=\frac{1}{2}AB+IK+\frac{1}{2}AB=AB+IK\)

Mà \(EF=\frac{AB+CD}{2}\) (cmt) nên \(AB+IK=\frac{AB+CD}{2}\Rightarrow IK=\frac{AB+CD}{2}-AB=\frac{AB+CD-2AB}{2}=\frac{CD-AB}{2}\)(ĐPCM)