Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :Bỏ dấu ngoặc
2007-(7-3+4)
= 2007 -7+3-4
= 1999
6+[(-5) + 4 - 1 ]
= 6-5+4-1
=4
5-[(-6+8-2]
= 5+6-8+2
=5
-10+(7-3+1)
= -10 +7-3+1
= -5
Bài 3 Tìm x
\(\dfrac{1}{3} = \dfrac{x}{6}\)
\(<=> x= \dfrac{1.6}{3}\)
\(<=> x=2\)
7/48 - (1/2 x 2 + 1/6 x 4 + 1/8 x 5 + 1/12 x 7 + 1/14 x 8) : x = 0
7/48 - (1 + 2/3 + 5/8 + 7/12 + 4/7) : x = 0 (đã rút gọn)
7/48 - (336/336 + 224/336 + 210/336 + 196/336 + 192/336) : x = 0 (quy đồng)
7/48 - 193/56 : x = 0
193/56 : x = 0 + 7/48
193/56 : x = 7/48
x = 193/56 : 7/48
x = 1158/49
\(\frac{\left|x-1\right|}{-8}=-\frac{3}{4}\)
=> |x - 1|.4 = (-8) . (-3)
=> |x - 1| . 4 = 24
=> |x - 1| = 24 : 4
=> |x - 1| = 6
=> \(\orbr{\begin{cases}x-1=6\\x-1=-6\end{cases}}\)
=> \(\orbr{\begin{cases}x=7\\x=-5\end{cases}}\)
Vậy ...
|2 - x| - 7 = 6/-2
=> |2 - x| = -3 + 7
=> |2 - x| = 4
=> \(\orbr{\begin{cases}2-x=4\\2-x=-4\end{cases}}\)
=> \(\orbr{\begin{cases}x=-2\\x=6\end{cases}}\)
vậy ...
\(\frac{-2}{1-x}=\frac{1-x}{-8}\)
=> (-2).(-8) = (1 - x).(1 - x)
=> (1 - x)2 = 16
=> (1 - x)2 = 42
=> \(\orbr{\begin{cases}1-x=4\\1-x=-4\end{cases}}\)
=> \(\orbr{\begin{cases}x=-3\\x=5\end{cases}}\)
Vậy ...
còn lại tự lm tương tự
A: x thuộc -5 ; 7
B: tập hợp rỗng
C: x thuộc -3 ; 5
D: x thuộc -8; 4
a/ \(2x+\frac{1}{7}=\frac{1}{3}\)
=> \(2x=\frac{1}{3}-\frac{1}{7}=\frac{7}{21}-\frac{3}{21}\)
=> \(2x=\frac{4}{21}\)
=> \(x=\frac{4}{21}:2=\frac{4}{21}.\frac{1}{2}=\frac{2}{21}\)
b/ \(3\left(x-\frac{1}{2}\right)=\frac{4}{9}\)
=> \(x-\frac{1}{2}=\frac{4}{9}:3=\frac{4}{9}.\frac{1}{3}\)
=> \(x-\frac{1}{2}=\frac{4}{27}\)
=> \(x=\frac{4}{27}+\frac{1}{2}=\frac{8}{54}+\frac{27}{54}=\frac{35}{54}\)
c/ \(\left(x-5\right)^2+4=68\)
=> \(\left(x-5\right)^2=68-4=64\)
=> \(\left[{}\begin{matrix}x-5=8\\x-5=-8\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=8+5=13\\x=-8+5=-3\end{matrix}\right.\)
d/ \(\left(\left|x\right|-\frac{1}{2}\right)\left(2x+\frac{3}{2}\right)=0\)
=> \(\left[{}\begin{matrix}\left|x\right|-\frac{1}{2}=0\\2x+\frac{3}{2}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left|x\right|=0+\frac{1}{2}=\frac{1}{2}\\2x=0-\frac{3}{2}=-\frac{3}{2}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\\x=-\frac{3}{2}:2=-\frac{3}{2}.\frac{1}{2}=-\frac{3}{4}\end{matrix}\right.\)
e) \(5x+2=3x+8\)
=> \(5x-3x=8-2=6\)
=> \(2x=6\)
=> \(x=6:2=3\)
f/ \(26-\left(5-2x\right)=27\)
=> \(5-2x=26-27=-1\)
=> \(2x=5-\left(-1\right)=5+1=6\)
=> \(x=6:2=3\)
g/ \(\left(4x-8\right)-\left(2x-6\right)=4\)
=> \(4x-8-2x+6=4\)
=> \(\left(4x-2x\right)+\left(-8+6\right)=4\)
=> \(2x+-2=4\)
=> \(2x=4+2=6\)
=> \(x=6:2=3\)
h/ \(\left(x+3\right)^3:3-1=-10\)
=> \(\left(x+3\right)^3:3=-10+1=-9\)
=> \(\left(x+3\right)^3=-9.3=-27\)
=> \(x+3=-3\)
=> \(x=-3-3=-6\)
\(\dfrac{1}{6}x-\dfrac{3}{8}=\dfrac{1}{4}\)
=>\(\dfrac{1}{6}x=\dfrac{1}{4}+\dfrac{3}{8}=\dfrac{5}{8}\)
=>\(x=\dfrac{5}{8}:\dfrac{1}{6}=\dfrac{5}{8}\cdot6=\dfrac{30}{8}=\dfrac{15}{4}\)