Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi vận tốc của ô tô nửa đoạn đường đầu là x, nửa đoạn đường cuối là y (y > x > 0)
Theo đề bài ta có: y = 20%x + x = \(\frac{1}{5}\)x + x = \(\frac{6}{5}\)x
\(\Rightarrow\frac{x}{y}=\frac{5}{6}\left(1\right)\)
Gọi thời gian đi nửa đoạn đường đầu ô tô đi là t1, thời gian nửa đoạn đường sau là t2 (t1 > t2 > 0)
=> t1 - t2 = \(\frac{10}{60}=\frac{1}{6}\left(h\right)\)
Ta có: x.t1 = y.t2 (cùng bằng \(\frac{1}{2}\) quãng đường AB)
\(\Rightarrow\frac{x}{y}=\frac{t_2}{t_1}\) kết hơp với (1) \(\Rightarrow\frac{t_2}{t_1}=\frac{5}{6}\Leftrightarrow\frac{t_2}{5}=\frac{t_1}{6}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{t_2}{5}=\frac{t_1}{6}=\frac{t_1-t_2}{6-5}=\frac{\frac{1}{6}}{1}=\frac{1}{6}\)
\(\Rightarrow\begin{cases}t_2=\frac{1}{6}.5=\frac{5}{6}\\t_1=\frac{1}{6}.6=1\end{cases}\)
Vậy thời gian thực tế ô tô đi hết quãng đường AB là:
t1 + t2 = 1 + \(\frac{5}{6}=\frac{11}{6}\) = 1h50'
Câu hỏi này không hỏi rõ là thời gian dự định hay thời gian thực tế mà đã làm rồi.

Gọi vận tốc của ô tô nửa đoạn đường đầu là x, nửa đoạn đường cuối là y (y > x > 0)
Theo đề bài ta có: y = 20%x + x = \(\frac{1}{5}\)x + x = \(\frac{6}{5}\)x
⇒\(\frac{x}{y}\)=\(\frac{5}{6}\) (1)
Gọi thời gian đi nửa đoạn đường đầu ô tô đi là t1, thời gian nửa đoạn đường sau là t2 (t1 > t2 > 0)
=> t1 - t2 = \(\frac{10}{60}\)=\(\frac{1}{6}\)(h)
Ta có: x.t1 = y.t2 (cùng bằng \(\frac{1}{2}\) quãng đường AB)
⇒\(\frac{x}{y}\)=\(\frac{t2}{t1}\) kết hơp với (1) ⇒\(\frac{t2}{t1}\)=\(\frac{5}{6}\)⇔\(\frac{t2}{5}\)=\(\frac{t1}{6}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{t2}{5}\)=\(\frac{t1}{6}\)=\(\frac{t1-t2}{6-5}\)=\(\frac{1}{6}\)
⇒\(\hept{\begin{cases}t2=\frac{1}{6}.5=\frac{5}{6}\\t1=\frac{1}{6}.6=1\end{cases}}\)
Vậy thời gian thực tế ô tô đi hết quãng đường AB là:
t1 + t2 = 1 + \(\frac{5}{6}\)=\(\frac{11}{6}\)= 1h50'

thời gian dự định ô tô đã đu từ A đến B là x(giờ)
vận tốc dự định là: AB / x (km/h)
Sau khi đi được 1/3 quãng đường (AB/3) , thời gian đi quãng đường này là:
(AB/3) / (AB/x) = x/3 (h)
Vận tốc oto sau đó là: AB/x + 25%*AB/x = 5AB/4x (km/h)
thời gian để đi 2/3 quãng đg còn lại (2AB/3) là: (2AB/3) / (5AB/4x) = 8x/15 (h)
otô đến B sớm hơn 10 phút = 1/6 h nên ta có:
x - (x/3 + 8x/15) = 1/6
<=> x - 13x/15 = 1/6
<=> 2x/15 = 1/6
<=> x = 1.25 h = 1h15' = 75'
=> thời gian thực tế là: 75 - 10 = 65 phút
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

Trên 2/3 đoạn đường còn lại, ô tô tăng vận tốc thêm 20% so với vận tốc dự kiến.
20% = 20/100 = 1/5.
Gọi vận tốc dự kiến là 5 phần, vận tốc đi 2/3 đoạn cuối sẽ là:
5 + 1 = 6 phần
Tỉ lệ vận tốc thực đi và vận tốc thực dự kiến là: 6/5
Thời gian đi tỉ lệ nghịch với vận tốc. Thời gian thực đi/thời gian dự kiến = 5/6.
Gọi thời gian dự kiến đi trong đoạn đường còn lại là 6 phần
Thì thời gian thực đi trong đoạn đường còn lại là 5 phần.
Hiệu số phần là: 6 - 5 = 1 (phần)
1 phần này tương ứng với 20 phút = 1/3 giờ.
Suy ra thời gian dự kiến đi đoạn đường còn lại là 6 phần x 1/3 giờ = 2 giờ.
Vậy đi 2/3 quãng đường AB dự kiến hết 2 giờ => đi cả quãng đường hết 2 x 3/2 = 3 giờ.

Gọi vận tốc của ô tô trong nửa quãng đường đầu là v (km/h; a > 0)
vận tốc của ô tô trong nửa quãng đường còn lại là: v + 20%v = \(\frac{6}{5}v\)
Đổi 10' = \(\frac{1}{6}h\)
Gọi thời gian ô tô đi trong nửa quãng đường đầu là t (h; t > 0)
thời gian ô tô đi trong nửa quãng đường còn lại là: t - \(\frac{1}{6}\)
Vì cùng đi hết nửa quãng đường AB nên thời gian và vận tốc là 2 đại lượng tỉ lệ nghịch
\(\Rightarrow\frac{v}{\frac{6}{5}v}=\frac{t-\frac{1}{6}}{t}=\frac{5}{6}\)
\(\Rightarrow\frac{t-\frac{1}{6}}{5}=\frac{t}{6}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{t}{6}=\frac{t-\frac{1}{6}}{5}=\frac{t-\left(t-\frac{1}{6}\right)}{6-5}=\frac{1}{6}\)
\(\Rightarrow\begin{cases}t=\frac{1}{6}.6=1\\t-\frac{1}{6}=\frac{1}{6}.5=\frac{5}{6}\end{cases}\)
Vậy thời gian ô tô đi từ A -> B là:
\(t+\left(t-\frac{1}{6}\right)=1+\frac{5}{6}=\frac{11}{6}\left(h\right)\)