Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: cos(3x-45 độ)=0
=>3x-45 độ=90 độ+k*180 độ
=>3x=135 độ+k*180 độ
=>x=45 độ+k*60 độ
=45 độ-120 độ+(k+2)*60 độ
=-75 độ+z*60 độ
=>Chọn B
2;
tan(x-15 độ)=1
=>x-15 độ=45 độ+k*180 độ
=>x=60 độ+k*180 độ
=>Chọn C
3: 2*cos(4x-20 độ)=0
=>cos(4x-20 độ)=0
=>4x-20 độ=90 độ+k*180 độ
=>4x=110 độ+k*180 độ
=>x=27,5 độ+k*45 độ
=>Chọn C
\(0,1^{2x-1}=100\)
\(\Leftrightarrow0,1^{2x-1}=0,1^{log_{0,1}100}\)
\(\Leftrightarrow2x-1=log_{0,1}100\)
\(\Leftrightarrow2x-1=-2\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Chọn A
a) 2cos2x - 3cosx + 1 = 0 (1)
Đặt : t = cosx với điều kiện -1 \(\le t\le1\)
(1)\(\Leftrightarrow\) 2t2 - 3t + 1= 0
\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}=cosx\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\left(k\in Z\right)}\)
a) Đkxđ: D = R
Đặt \(cosx=t;\left|t\right|\le1\). Phương trình trở thành:m\(2t^2-3t+1=0\Leftrightarrow\left[{}\begin{matrix}t=1\left(tm\right)\\t=\dfrac{1}{2}\left(tm\right)\end{matrix}\right.\).
Với \(t=1\) ta có \(cosx=1\)\(\Leftrightarrow x=k2\pi\).
Với \(t=\dfrac{1}{2}\) ta có \(cosx=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\).
Vậy phương trình có 3 họ nghiệm là:
- \(x=k2\pi\);
- \(x=\dfrac{\pi}{3}+k2\pi\);
- \(x=-\dfrac{\pi}{3}+k2\pi\).
\(\Leftrightarrow x+10^0=-90^0+k360^0\)
\(\Leftrightarrow x=-100^0+k360^0\)