![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tham khảo nha bạn!
Đặt A = 4789655-27n3
Với 20349<n<47238 ta có 351429<4789655 - 27n<4240232
hay 351429<A3<4240232, tức là 152.034921<A<161.8563987
Do A là số tự nhiên nên A chỉ có thể bằng một trong các số 153; 154; 155;..;160;161,
Vì A = 4789655-27n3 nên n= 4789655-A^3 : 27
quy trình bấm như sau:
1, lưa 152 vào A
Bấm 152 shift sto A
2, Ghi vào màn hình A = A +1 :( 4789655 - A^3) :27
Bấm alpha A alpha = alpha A + 1 alpha :( 4789655 - alpha A shift x^3) : 27
Bấm = cho đến khi A = 162, chú ý sau mỗi lần bấm = xem phép chia có hết không nếu hết thì thỏa manc yêu cầu đêf bài
Kết quả:158
![](https://rs.olm.vn/images/avt/0.png?1311)
\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)
\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)
Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)
Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890
Vậy n=890
Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)
Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)
\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)
\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)
\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)
\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)
\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)
Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8
Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 =>
=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3