\(\hept{\begin{cases}x^2+y^2=2x^2y^2\\y+8x^2y+3x=5x^2+7xy\end{cases}}\)

2.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

1. Xét PT 2. Xét \(x^2y=0\)=>......

Xét \(x^2y\ne0\)Chia 2 vế pt 1 cho x^2y^2, chia 2 vế pt 2 cho x^2y rồi đặt 1/x=a, 1/y=b

=>\(\hept{\begin{cases}a^2+b^2=2\\a^2+8+3ab=5b^2+7a\end{cases}}\)=>\(a^2+a^2+b^2+6+3ab=5b^2=7a.\)Phân tích thành nhân tử

5 tháng 7 2017

Đề nghị bạn xem lại đề câu 2.

Dùng cái đầu đi ạ

5 tháng 7 2017

1. Hướng làm đặt kiểu tổng tích.
\(\hept{\begin{cases}4x^2-4x+4\left(y^2-2y\right)=22-1-4=17\\\left(4x^2-4x\right).4\left(y^2-2y\right)=2.16=32\end{cases}}\)

2. \(x^2y^2+2y-x-x^2y^2-x-y=2xy-3xy \)
\(y-2x=xy< => y\left(1-x\right)=2x=>y=\frac{2x}{1-x}\)
. Hoặc 
chia 2 vế pt cho xy(xy khác 0)  vầ đặt biến \(\left(\frac{1}{x};\frac{1}{y}\right)=\left(a;b\right)\)