\(x^4+6x^3+7x^2-6x+1=9\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tu phuong trinh da cho suy ra

(x-1)(x+1)(x+2)(x+4)=0

x=1;-1;-1;-4

7 tháng 6 2017

\(x^4+6x^3+7x^2-6x+1=9\)               

\(\Leftrightarrow x^4+6x^3+7x^2-6x-8=0\)

\(\Leftrightarrow x^4+x^3+5x^3+5x^2+2x^2+2x-8x-8=0\)

\(\Leftrightarrow\left(x^4+x^3\right)+\left(5x^3+5x^2\right)+\left(2x^2+2x\right)-\left(8x+8\right)=0\)

\(\Leftrightarrow x^3\left(x+1\right)+5x^2\left(x+1\right)+2x\left(x+1\right)-8\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+5x^2+2x-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^3+5x^2+2x-8=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x^3+5x^2+2x-8=0\end{cases}}\)

\(x^3+5x^2+2x-8=0\)

\(\Leftrightarrow x^3-x^2+6x^2-6x+8x-8=0\)

\(\Leftrightarrow\left(x^3-x^2\right)+\left(6x^2-6x\right)+\left(8x-8\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)+6x\left(x-1\right)+8\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+6x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+6x+8=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2+4x+2x+8=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x\left(x+4\right)+2\left(x+4\right)=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4\right)\left(x+2\right)=0\end{cases}}\)

\(\left(x+4\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=-2\end{cases}}\)

Vậy \(x=\left\{-4;-2;-1;1\right\}\)

10 tháng 11 2018

câu a đề có sai số mũ ko vậy

b) \(\dfrac{x^4+x^3-x-1}{x^4+x^3+2x^2+x+1}\)

\(=\dfrac{x^3\left(x+1\right)-\left(x+1\right)}{x^4+x^3+x^2+x^2+x+1}\)

\(=\dfrac{\left(x^3-1\right)\left(x+1\right)}{x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x^2+1\right)}=\dfrac{x^2-1}{x^2+1}\)

c) \(\dfrac{x^4+6x^3+9x^2-1}{x^4+6x^3+7x^2-6x+1}\)

\(=\dfrac{\left(x^2+3x\right)^2-1}{x^4+6x^3+9x^2-2x^2-6x+1}\)

\(=\dfrac{\left(x^2+3x-1\right)\left(x^2+3x+1\right)}{\left(x^2+3x\right)^2-2\left(x^2+3x\right)+1}\)

\(=\dfrac{\left(x^2+3x-1\right)\left(x^2+3x+1\right)}{\left(x^2+3x-1\right)^2}=\dfrac{x^2+3x+1}{x^2-3x+1}\)

23 tháng 12 2016

a, \(x^4+6x^3+7x^2-6x+1\)

\(=x^4-2x^2+1+6x^3+9x^2+6x\)

\(=\left(x^2-1\right)^2+6x\left(x^2-1\right)+9x^2\)

\(=\left(x^2-1+3x\right)^2\)

b, \(x^4-7x^3+14x^2-7x+1\)

\(=x^4+2x^2+1+7x^3+12x^2-7x\)

\(=\left(x^2+1\right)^2-7x\left(x^2+1\right)+12^2\)

\(=\left(x^2-1+3x\right)^2\)

c, \(12x^2-11x-36\)

\(=12x^2-27x+16x-36\)

\(=3x\left(4x-9\right)+4\left(4x-9\right)\)

\(=\left(4x-9\right)\left(3x+4\right)\)

AH
Akai Haruma
Giáo viên
10 tháng 10 2018

1)

\(15x^3+29x^2-8x-12=(15x^3+30x^2)-(x^2+2x)-(6x+12)\)

\(=15x^2(x+2)-x(x+2)-6(x+2)\)

\(=(x+2)(15x^2-x-6)=(x+2)(15x^2-10x+9x-6)\)

\(=(x+2)[5x(3x-2)+3(3x-2)]\)

\(=(x+2)(3x-2)(5x+3)\)

AH
Akai Haruma
Giáo viên
10 tháng 10 2018

2)

\(x^3+4x^2-29x+24=(x^3-x^2)+(5x^2-5x)-(24x-24)\)

\(=x^2(x-1)+5x(x-1)-24(x-1)\)

\(=(x-1)(x^2+5x-24)\)

\(=(x-1)(x^2-3x+8x-24)\)

\(=(x-1)[x(x-3)+8(x-3)]=(x-1)(x-3)(x+8)\)

4 tháng 11 2017

\(1.x^4+6x^3+11x^2+6x+1\)

\(=x^4+6x^3+9x^2+2x^2+6x+1\)

\(=x^4+9x^2+1+6x^3+2x^2+6x\)

\(=\left(x^2\right)^2+\left(3x\right)^2+1^2+2.x^2.3x+2.x^2.1+2.3x.1\)

\(=\left(x^2+3x+1\right)^2\)

\(2,6x^4+5x^3-38x^2+5x+6\)

\(=6x^4+6x^3+2x^3-3x^3-36x^2+2x^2-3x^2-x^2-12x+18x-x+6\)

\(=\left(6x^4+2x^3\right)+\left(6x^3+2x^2\right)-\left(3x^3+x^2\right)-\left(36x^2+12x\right)+\left(18x+6\right)-\left(3x^2+x\right)\)

\(=2x^3\left(3x+1\right)+2x^2\left(3x+1\right)-x^2\left(3x+1\right)-12x\left(3x+1\right)+6\left(3x+1\right)-x\left(3x+1\right)\)

\(=\left(3x+1\right)\left(2x^3+2x^2-x^2-12x+6-x\right)\)

\(=\left(3x+1\right)\left[\left(2x^3-x^2\right)+\left(2x^2-x\right)-\left(12x-6\right)\right]\)

\(=\left(3x+1\right)\left[x^2\left(2x-1\right)+x\left(2x-1\right)-6\left(2x-1\right)\right]\)

\(=\left(3x+1\right)\left(2x-1\right)\left(x^2+x-6\right)\)

\(=\left(3x+1\right)\left(2x-1\right)\left(x^2+3x-2x-6\right)\)

\(=\left(3x+1\right)\left(2x-1\right)\left[\left(x^2+3x\right)-\left(2x+6\right)\right]\)

\(=\left(3x+1\right)\left(2x-1\right)\left[x\left(x+3\right)-2\left(x+3\right)\right]\)

\(=\left(3x+1\right)\left(2x-1\right)\left(x+3\right)\left(x-2\right)\)

4 tháng 11 2017

1. \(x^4+6x^3+11x^2+6x+1\)

\(=\left(x^2\right)^2+2.x^2.3x+\left(3x\right)^2+2x^2+6x+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

3. \(x^4-7x^3+14x^2-7x+1\)

\(=x^2\left(x^2-7x+14-\dfrac{7}{x}+\dfrac{1}{x^2}\right)\)

\(=x^2\left[\left(x^2+\dfrac{1}{x^2}\right)-\left(7x+\dfrac{7}{x}\right)+14\right]\)

\(=x^2\left[\left(x+\dfrac{1}{x}\right)^2-7\left(x+\dfrac{1}{x}\right)+12\right]\)

\(=x^2\left[\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right).\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{1}{4}\right]\)

\(=x^2\left[\left(x+\dfrac{1}{x}-\dfrac{7}{2}\right)^2-\dfrac{1}{4}\right]\)

\(=\left(x^2+1-\dfrac{7}{2}x\right)^2-\left(\dfrac{1}{2}x\right)^2\)

\(=\left(x^2-3x+1\right)\left(x^2-4x+1\right)\)

Có thể phân tích thành HĐT tiếp hoặc không.