\(x^3\)- ( a+b+c )
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2018

\(x^3-\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x-abc=0\)

\(\Leftrightarrow\left(x^3-ax^2\right)-\left(bx^2-abx\right)-\left(cx^2-cax\right)+\left(bcx-abc\right)=0\)\(\Leftrightarrow x^2\left(x-a\right)-bx\left(x-a\right)-cx\left(x-a\right)+bc\left(x-a\right)=0\)

\(\Leftrightarrow\left(x-a\right)[\left(x^2-bx\right)-\left(cx-bc\right)]=0\)

\(\Leftrightarrow\left(x-a\right)\left(x-b\right)\left(x-c\right)=0\)

Từ đó: \(S=\left\{a;b;c\right\}\)

\(a,4x^2-\left(2x-1\right)\left(1-4x\right)=1\)

\(\left(2x-1\right)\left(1-4x\right)=4x.4x-1\)

\(TH1:\orbr{\begin{cases}2x-1=4x.4x-1\\1-4x=4x.4x-1\end{cases}}\Rightarrow\orbr{\begin{cases}2x-4x.4x=-1+1\\-4x-4x.4x=-1-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x-16x=0\\-4x-16x=-2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}-14x=0\\-20x=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{10}\end{cases}}}\)

Vậy pt có nghiệm là (x;y) = (0;1/10) 

tự thực hiện tiếp vs dấu - , kl TH1 thoi 

15 tháng 1 2017

có thiếu gì ko bn

15 tháng 1 2017

đầu bài k đầy đủ thì giải sao được

15 tháng 1 2017

Ta có \(\frac{x-b-c}{a}+\frac{x-c-a}{b}+\frac{x-b-a}{c}=3\)

\(\Rightarrow\frac{x-b-c}{a}+\frac{x-c-a}{b}+\frac{x-b-a}{c}-3=0\)

\(\Leftrightarrow\left(\frac{x-b-c}{a}-1\right)+\left(\frac{x-c-a}{b}-1\right)+\left(\frac{x-b-a}{c}-1\right)=0\)

\(\Leftrightarrow\frac{x-a-b-c}{a}+\frac{x-a-b-c}{b}+\frac{x-a-b-c}{c}=0\)

\(\Leftrightarrow\left(x-a-b-c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ne0\) nên chỉ có

x-a-b-c=0 =>x=a+b+c

Vậy x=a+b+c

21 tháng 8 2017

Đặt \(\sqrt{x}=t\Rightarrow t^2=x\)

21 tháng 8 2017

Mình nghĩ đề câu a là: \(x+\sqrt{5}+\sqrt{x}-1=-6\)

Đặt \(\sqrt{x}=t\Rightarrow t^2=x\)

\(Ta\)\(được\)\(t^2+\sqrt{5}+t-1=-6\)

\(\Leftrightarrow t^2-5+t+\sqrt{5}=0\)

\(\Leftrightarrow\left(t-\sqrt{5}\right).\left(t+\sqrt{5}\right)+\left(t+\sqrt{5}\right)=0\)

\(\Leftrightarrow\left(t+\sqrt{5}\right).\left(t-\sqrt{5}+1\right)=0\)

\(\Rightarrow\hept{\begin{cases}t=-\sqrt{5}\\t=\sqrt{5}-1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=5\\x=6-2\sqrt{5}\end{cases}}\)