\(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2021

1) \(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x+5y=50\\10x-6y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11y=44\\2x+y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=3\end{matrix}\right.\)

Vậy hpt có nghiệm (x;y) = (3;4)

2)

a) 3x2 - 2x - 1 = 0

\(\Leftrightarrow3x^2-3x+x-1=0\)

\(\Leftrightarrow3x\left(x-1\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=1\end{matrix}\right.\)

Vậy pt có nghiệm x = 1 hoặc x = 3

b) Đặt x2 = t (t \(\ge\) 0)

Pt trở thành: t2 - 20t + 4 = 0

\(\Delta\) = (-20)2 - 4.1.4 = 400 - 16 = 384

=> pt có 2 nghiệm phân biệt t1 = \(\dfrac{20+8\sqrt{6}}{2}=10+4\sqrt{6}\)

t2 = \(\dfrac{20-8\sqrt{6}}{2}=10-4\sqrt{6}\)

=> x1 = \(\sqrt{10+4\sqrt{6}}=\sqrt{\left(2+\sqrt{6}\right)^2}=2+\sqrt{6}\)

x2 = \(2-\sqrt{6}\)

18 tháng 2 2019

1. Giải phương trình, hệ phương trình:

a) 2x2 - 5x + 3 = 0

\(\Leftrightarrow2x^2-2x-3x+3=0\)

\(\Leftrightarrow2x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

b) x2 - 3x = 0

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

c)\(\left\{{}\begin{matrix}2\left(x+1\right)-5\left(y+1\right)=5\\3\left(x+1\right)-2\left(y+1\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6\left(x+1\right)-15\left(y+1\right)=15\\6\left(x+1\right)-4\left(y+1\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-11\left(y+1\right)=13\\3\left(x+1\right)-2\left(y+1\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+1=\dfrac{-13}{11}\\3\left(x+1\right)-2.\left(-\dfrac{13}{11}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{24}{11}\\3\left(x+1\right)=-\dfrac{15}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{24}{11}\\x=-\dfrac{16}{11}\end{matrix}\right.\)

Hix ,mệt quá.

18 tháng 2 2019

\(d,\left\{{}\begin{matrix}\dfrac{15}{x}-\dfrac{7}{y}=9\\\dfrac{4}{x}+\dfrac{9}{y}=35\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{60}{x}-\dfrac{28}{y}=36\\\dfrac{60}{x}+\dfrac{135}{y}=525\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{163}{y}=-489\\\dfrac{60}{x}+\dfrac{135}{y}=525\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\\dfrac{60}{x}+405=525\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)

7 tháng 5 2018

a) \(\left\{{}\begin{matrix}x+3y=11\\2x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3y=11\\6x-3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x=14\\x+3y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

Vậy hệ phương trình có nghiệm duy nhất (x; y) = (2; 3)

b) \(3x^4+9x^2-12=0\) (1)

Đặt \(x^2=t\left(t\ge0\right)\)

Phương trình (1) trở thành: \(3t^2+9t-12=0\)

Ta có: \(a+b+c=3+9+\left(-12\right)=0\)

\(\Rightarrow t_1=1\) (Thỏa mãn \(t\ge0\) )

\(t_2=-4\) (Không thỏa mãn \(t\ge0\) )

+) Với \(t=1\) , ta có: \(x^2=1\Leftrightarrow x_1=1;x_2=-1\)

Vậy phương trình có hai nghệm: \(x_1=1;x_2=-1\)

18 tháng 11 2017

a)

đặt x^2 -2x -3 =t

<=> t^2 +32t +112 =0

t=-4 nhận

t=-28

loại

=> x^2 -2x +1 =0 => x=1

4 tháng 1 2019

mình giải tắt nhé vì mình không giỏi dùng công thức. Thông cảm nha.

1.

\(\left\{{}\begin{matrix}3x-y=2m+3\\x+y=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m}{4}+1\\y=\dfrac{-5m}{4}\end{matrix}\right.\)

vậy phương trình có nghiệm duy nhất là \(\left(\dfrac{m}{4}+1;\dfrac{-5m}{4}\right)\)

Thay vào đẳng thức ta được:

\(\left(\dfrac{m}{4}+1\right)^2+\left(\dfrac{-5m}{4}\right)^2=5\\ \Leftrightarrow x=\)

6 tháng 1 2019

k sao đâu bạn mình cảm ơn ạ

30 tháng 4 2018

a) Đặt t = \(x^2\)

ta có p/t : \(3x^2-4x+1=0\)

Bn lập Δ rồi giải

b)⇔ \(\left\{{}\begin{matrix}6x+3y=15\\6x-4y=22\end{matrix}\right.\)

tự giải

30 tháng 4 2018

bạn có thể giải chi tiết giúp mình không

3 tháng 6 2020

a. \(x^2+2018x-2019=0\)

Ta có: \(a+b+c=1+2018+\left(-2019\right)=0\)\(\)

Nên \(x_1=1,x_2=-2019\)

Vậy . . .

b. \(\left\{{}\begin{matrix}3x-y=5\\x+3y=15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-y=5\\3x+9y=45\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-10y=-40\\3x-y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=3\end{matrix}\right.\)

Vậy hệ pt có nghiệm . . . .

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)-xy=100\\xy-\left(x-2\right)\left(y-2\right)=64\end{matrix}\right.\)

=>xy+3x+2y+6-xy=100 và xy-xy+2x+2y-4=64

=>3x+2y=94 và 2x+2y=68

=>x=26 và x+y=34

=>x=26 và y=8

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3+2}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5y+20-11}{y+4}=9\end{matrix}\right.\)

=>\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+1}-\dfrac{2}{y+4}=4-3=1\\\dfrac{-2}{x+1}+\dfrac{11}{y+4}=9+5-2=12\end{matrix}\right.\)

=>x+1=18/35; y+4=9/13

=>x=-17/35; y=-43/18