\(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}\)

2) Gi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

a/ Ta có: \(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(3+\sqrt{5}\right)^2}\)

    \(=3-\sqrt{5}+3+\sqrt{5}=6\)

b/ \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

     \(=\sqrt{5}-2-\sqrt{5}-2=-4\)

10 tháng 7 2017

Ta có :

a)\(\left(2\sqrt{5}-\sqrt{7}\right)\left(2\sqrt{5}-\sqrt{7}\right)=\left(2\sqrt{5}\right)^2-\left(\sqrt{7}\right)^2=20-7=13\)

b)\(\left(5\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-5\sqrt{2}\right)=\left(2\sqrt{3}\right)^2-\left(5\sqrt{2}\right)^2=12-50=-38\)

c)\(\sqrt{9+4\sqrt{5}}=\sqrt{2^2+2.2.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2+\sqrt{5}\right|=2+\sqrt{5}\)

24 tháng 10 2018

\(\sqrt{\left(\sqrt{5}+3\right)^2}+\sqrt{14-6\sqrt{5}}\)\(=\left|\sqrt{5}+3\right|+\sqrt{9-2.3\sqrt{5}+5}\)

\(=\sqrt{5}+3+\sqrt{\left(3-\sqrt{5}\right)^2}\) \(=\sqrt{5}+3+\left|3-\sqrt{5}\right|\)

\(=\sqrt{5}+3+3-\sqrt{5}=6\) ( do \(3-\sqrt{5}>0\))

27 tháng 10 2019

a, c.Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath

7 tháng 8 2020

\(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)

\(A=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(A=\sqrt{5}-1-\sqrt{5}-1\)

\(A=-2\)

\(B=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(B=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(B=\sqrt{5}+2-\sqrt{5}+2\)

\(B=4\)

Sửa đề :

\(C=\sqrt{14-6\sqrt{5}}-\sqrt{14+6\sqrt{5}}\)

\(C=\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(3+\sqrt{5}\right)^2}\)

\(C=3-\sqrt{5}-3-\sqrt{5}\)

\(C=-2\sqrt{5}\)

1: Ta có: \(\sqrt{x^2-x+\frac{1}{4}}\)

\(=\sqrt{x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2}\)

\(=\sqrt{\left(x-\frac{1}{2}\right)^2}\)

\(=\left|x-\frac{1}{2}\right|\)

2: Ta có: \(\sqrt{x^2}+\sqrt{x^6}\)

\(=\sqrt{x^2}\cdot1+\sqrt{x^2}\cdot\sqrt{x^4}\)

\(=\sqrt{x^2}\cdot\left(1+\sqrt{x^4}\right)\)

\(=\left|x\right|\cdot\left(1+x^2\right)\)

3: Ta có: \(C=\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)

\(=\sqrt{2-2\cdot\sqrt{2}\cdot1+1}-\sqrt{4-2\cdot2\cdot\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{2}-1\right|-\left|2-\sqrt{2}\right|\)

\(=\sqrt{2}-1-2+\sqrt{2}\)

\(=2\sqrt{2}-3\)

a) Ta có: \(\sqrt{11-2\sqrt{10}}\)

\(=\sqrt{10-2\cdot\sqrt{10}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{10}-1\right)^2}\)

\(=\left|\sqrt{10}-1\right|=\sqrt{10}-1\)

b) Ta có: \(\sqrt{9-2\sqrt{14}}\)

\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{7}-\sqrt{2}\right|\)

\(=\sqrt{7}-\sqrt{2}\)

c) Ta có: \(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}+\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\)

\(=\sqrt{3}+1+\sqrt{3}-1\)

\(=2\sqrt{3}\)

d) Ta có: \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}-\sqrt{5+2\cdot\sqrt{5}\cdot2+4}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

\(=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)

\(=\sqrt{5}-2-\left(\sqrt{5}+2\right)\)

\(=\sqrt{5}-2-\sqrt{5}-2\)

\(=-4\)

e) Ta có: \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

\(=\frac{\sqrt{2}\cdot\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{2}\cdot\left(\sqrt{4-\sqrt{7}}\right)-\sqrt{2}\cdot\left(\sqrt{4+\sqrt{7}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)

\(=\frac{\sqrt{7-2\cdot\sqrt{7}\cdot1+1}-\sqrt{7+2\cdot\sqrt{7}\cdot1+1}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\left(\sqrt{7}+1\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)

\(=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)

g) Ta có: \(\sqrt{3}+\sqrt{11+6\sqrt{2}}+\sqrt{5+2\sqrt{6}}\)

\(=\sqrt{3}+\sqrt{9+2\cdot3\cdot\sqrt{2}+2}+\sqrt{2+2\cdot\sqrt{2}\cdot\sqrt{3}+3}\)

\(=\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}\)

\(=\sqrt{3}+\left|3+\sqrt{2}\right|+\left|\sqrt{2}+\sqrt{3}\right|\)

\(=\sqrt{3}+3+\sqrt{2}+\sqrt{2}+\sqrt{3}\)

\(=3+2\sqrt{3}+2\sqrt{2}\)

h) Ta có: \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\cdot\sqrt{3+2\cdot\sqrt{3}\cdot2+4}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\cdot\sqrt{\left(\sqrt{3}+2\right)^2}}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{48-10\cdot\left(\sqrt{3}+2\right)}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{48-10\sqrt{3}-20}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{25-2\cdot5\cdot\sqrt{3}+3}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{\left(5-\sqrt{3}\right)^2}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\left(5-\sqrt{3}\right)}\)

\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)

\(=\sqrt{25}=5\)

k) Ta có: \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)

\(=\sqrt{49-2\cdot7\cdot\sqrt{45}+45}-\sqrt{49+2\cdot7\cdot\sqrt{45}+45}\)

\(=\sqrt{\left(7-\sqrt{45}\right)^2}-\sqrt{\left(7+\sqrt{45}\right)^2}\)

\(=\left|7-\sqrt{45}\right|-\left|7+\sqrt{45}\right|\)

\(=7-\sqrt{45}-\left(7+\sqrt{45}\right)\)

\(=7-\sqrt{45}-7-\sqrt{45}\)

\(=-2\sqrt{45}=-6\sqrt{5}\)

i) Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(\Leftrightarrow A^2=\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2\)

\(=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\cdot\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

\(=8+2\cdot\sqrt{16-\left(10+2\sqrt{5}\right)}\)

\(=8+2\cdot\sqrt{6-2\sqrt{5}}\)

\(=8+2\cdot\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=8+2\cdot\left(\sqrt{5}-1\right)\)

\(=8+2\sqrt{5}-2\)

\(=6+2\sqrt{5}\)

\(=\left(\sqrt{5}+1\right)^2\)

\(\Leftrightarrow A=\sqrt{5}+1\)

25 tháng 6 2018

\(\text{a) }\sqrt{9-2\sqrt{14}}=\sqrt{7+2-2\sqrt{14}}\\ =\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}=\sqrt{7}-\sqrt{2}\)

\(\text{b) }\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\\ \left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\\ =4-\sqrt{7}-2\sqrt{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}+4+\sqrt{7}\\ =8-2\sqrt{16-7}\\ =8-2\sqrt{9}=8-6=2\\ \Rightarrow\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\sqrt{2}\)

\(\text{c) }\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\\ \left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2\\ =4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}+4-\sqrt{10+2\sqrt{5}}\\ =8+2\sqrt{16-10-2\sqrt{5}}\\ =8+2\sqrt{5+1-2\sqrt{5}}\\ =8+2\sqrt{\left(\sqrt{5}-1\right)^2}\\ =8+2\sqrt{5}-2\\ =5+1+2\sqrt{5}\\ =\left(\sqrt{5}+1\right)^2\\ \Rightarrow\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}=\sqrt{5}+1\)

17 tháng 8 2017

a) \(\sqrt{9-2\sqrt{14}}=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}=\left|\sqrt{7}-\sqrt{2}\right|=\sqrt{7}-\sqrt{2}\)

b) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\dfrac{\sqrt{2}\sqrt{4-\sqrt{7}}}{\sqrt{2}}-\dfrac{\sqrt{2}\sqrt{4+\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{2\left(4-\sqrt{7}\right)}}{\sqrt{2}}-\dfrac{\sqrt{2\left(4+\sqrt{7}\right)}}{\sqrt{2}}=\dfrac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}-\dfrac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}-\dfrac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}=\dfrac{\left|\sqrt{7}-1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{7}+1\right|}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}-1}{\sqrt{2}}-\dfrac{\sqrt{7}+1}{\sqrt{2}}=\dfrac{\sqrt{7}-1-\left(\sqrt{7}+1\right)}{\sqrt{2}}=\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)

\(=\dfrac{-2}{\sqrt{2}}=\dfrac{-\sqrt{2}\sqrt{2}}{\sqrt{2}}=-\sqrt{2}\)