\(\frac{x}{2}\)= \(\frac{y}{3}\)và x y = 24

2) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

1, \(\frac{x}{2}=\frac{y}{3}\) và xy = 24

Đặt \(\frac{x}{2}=\frac{y}{3}=k\)\(\rightarrow x=2k;y=3k\)

Do xy = 24 => \(2k.3k=24\)

                    \(\rightarrow6k^2=24\rightarrow k^2=\pm4\rightarrow k=\pm2\)

\(\Rightarrow x=\pm4;y=\pm6\)

                                                              

                                                               

23 tháng 7 2019

còn câu 2) thì sao

16 tháng 9 2017

Ta có : \(\frac{x-1}{5}=\frac{y-2}{2}=\frac{z-2}{3}=\frac{2y-4}{4}=\frac{x-1+2y-4-\left(z-2\right)}{5+4-3}=\frac{x-1+2y-4-z+2}{6}\)

\(=\frac{x+2y-z-3}{6}=\frac{3}{6}=\frac{1}{2}\)

Nên : \(\frac{x-1}{5}=\frac{1}{2}\Rightarrow x-1=\frac{5}{2}\Rightarrow x=\frac{7}{2}\)

          \(\frac{y-2}{2}=\frac{1}{2}\Rightarrow y-2=1\Rightarrow y=3\)

             \(\frac{z-2}{3}=\frac{1}{2}\Rightarrow z-2=\frac{3}{2}\Rightarrow z=\frac{7}{2}\)

Vậy ,,,,,,,,,,,,,,,,,,

23 tháng 7 2019

Bài 1 nghĩa là 5x = 2y và \(x^3\cdot y^2=200\)à???

23 tháng 7 2019

1) Ta có: 5x = 2y = x/2 = y/5 

Đặt \(\frac{x}{2}=\frac{y}{5}=k\) => \(\hept{\begin{cases}x=2k\\y=5k\end{cases}}\) (*)

Khi đó, ta có: x3y2 = 200

=> (2k)3.(5k)2 = 200

=> 8k3 . 25k2 = 200

=> 200k5 = 200

=> k5 = 1

=> k = 1

Thay k = 1 vào (*), ta được:

+) x = 2.1 = 2

+) y = 5.1 = 5

Vậy ...

4 tháng 7 2017

a,

Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k,y=3k\)

=> xy = 2k3k = 6k2 = 54

=> k2 = 9 

=> k = +-3 

=> [x,y] = [-6;-9], [6;9]

b,

\(\frac{5}{x}=\frac{3}{y}\Leftrightarrow\frac{25}{x^2}=\frac{9}{y^2}\)

áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{25}{x^2}=\frac{9}{y^2}=\frac{25-9}{x^2-y^2}=\frac{16}{4}=4\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\\y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\end{cases}}\)

c,

\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)

\(\Rightarrow\frac{1+4y}{24}=\frac{1+6y}{6x}=\frac{1+2y}{18}=\frac{1+2y+1+6y}{18+6x}=\frac{2+8y}{18+6x}=\frac{2\left[1+4y\right]}{2\left[9+3x\right]}=\frac{1+4y}{9+3x}\)

=> 24 = 9 + 3x

=> 3x = 15

=> x = 5

\(\frac{1+2y}{18}=\frac{1+4y}{24}\Leftrightarrow24\left[1+2y\right]=18\left[1+4y\right]\Leftrightarrow24+48y=18+72y\)

=> 24 + 48y - 18 = 72y

=> 6 + 48y = 72y

=> 6 = 24y

=> y = 1/4

10 tháng 7 2017

Đào Trọng Luân thiếu TH rồi

21 tháng 11 2019

BÀi 2:

Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)

a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)

b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)

c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)

d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)

21 tháng 11 2019

b)Vì BCNN(3;5) = 15

\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)

Vậy...

c)Vì BCNN(2;3;5) = 30

\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

WTFFFFFF>>>

d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính

e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)

\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)

Vậy...

3 tháng 1 2018

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5

=> x-1/2 = 5 => x-1=5 => x=6

y-2/3 = 5 => y-2 = 15 => y =17

z-3/4=5 => z-3=20 => z=23

3 tháng 1 2018

Đặt x/2=y/3=z/5=k => x=2k,y=3k,z=5k

Ta có: xyz=2k.3k.5k=30k3 = 810 => k3 = 27 => k=3

=> x=2.3=6

y=3.3=9

z=5.3=15

28 tháng 5 2018

a) Ta có: \(\frac{x+2}{5}=\frac{1}{x-2}\Leftrightarrow\left(x+2\right).\left(x-2\right)=5\)

                                              \(\Rightarrow x^2-4=5\)

                                              \(\Rightarrow x^2=9\)

                                              \(\Rightarrow x=\left\{3;-3\right\}\)

b) \(\frac{x^2}{6}=\frac{24}{25}\Rightarrow x^2=\frac{6.24}{25}=\frac{144}{25}\)

                            \(\Rightarrow x=\left\{\frac{12}{5};\frac{-12}{5}\right\}\)

c) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{3^2}=\frac{y^2}{4^2}=\frac{x^2+y^2}{3^2+4^2}=\frac{100}{25}=4\)

\(\Rightarrow x^2=4.9=36\Rightarrow x=\left\{-6;6\right\}\)

      \(y^2=4.16=64\Rightarrow y=\left\{-8;8\right\}\)

28 tháng 5 2018

1 )           Ta có : 

\(\frac{x+2}{5}=\frac{1}{x-2}\)

\(\Rightarrow\left(x+2\right)\left(x-2\right)=1.5\)

\(\Rightarrow\left(x+2\right)x-\left(x+2\right).2=5\)

\(\Rightarrow x^2+2x-2x-4=5\)

\(\Rightarrow x^2-4=5\)

\(\Rightarrow x^2=5+4\)

\(\Rightarrow x^2=9\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Vậy ...

2 )          

\(\frac{x^2}{6}=\frac{24}{25}\Rightarrow x^2=\frac{24}{25}.6=\frac{144}{25}\Rightarrow\orbr{\begin{cases}x=\frac{12}{5}\\x=-\frac{12}{5}\end{cases}}\)

Vậy ...

3 )        

Ta có : 

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}\)và      \(x^2+y^2=100\)

Áp dụng tính chất dãy tỉ số  bằng nhau , ta có : 

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

\(\Rightarrow\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

1.

\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)

\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)

\(=2x^5y^4-4x^2y^3\)

2.

\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)

\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)

\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)

3.

\(5x-7xy^2+3x-\frac{1}{2}xy^2\)

\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)

\(=8x-\frac{15}{2}xy^2\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

4.

\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)

\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)

\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)

5.

\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)

\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)

\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)

6.

\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)

\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)