Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1-\frac{1}{2}\left(1+2\right)-\frac{1}{3}.\left(1+2+3\right)-\frac{1}{4}.\left(1+2+3+4\right)-...-\frac{1}{20}.\left(1+2+3+...+20\right)\)
\(B=1-\frac{1}{2}.\left(1+2\right).2:2-\frac{1}{4}.\left(1+4\right).4:2-...-\frac{1}{20}.\left(1+20\right).20:2\)
\(B=1-3:2-5:2-...-21:2\)
\(B=1-3.\frac{1}{2}-5.\frac{1}{2}-...-21.\frac{1}{2}\)
\(B=1-\frac{1}{2}.\left(3+5+...+21\right)\)
Đặt C = 3 + 5 + ... + 21
Số số hạng của tổng C là: (21 - 3) : 2 + 1 = 10 (số)
=> C = (3 + 21) x 10 : 2 = 24 x 5 = 120
=> \(A=1-\frac{1}{2}.120\)
\(A=1-60=-59\)
\(=\frac{8}{9}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)
\(=\frac{8}{9}-\frac{1}{8}+\frac{1}{9}-\frac{1}{7}+\frac{1}{8}-\frac{1}{6}+\frac{1}{7}-\frac{1}{5}+\frac{1}{6}-...-1+\frac{1}{2}\)= 0
Vì \(\frac{1}{n.\left(n+1\right)}=\frac{\left(n+1\right)-n}{n.\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
\(=1+\frac{1}{2}.\frac{\left(1+2\right).3}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+...+\frac{1}{20}.\frac{\left(1+20\right).20}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}\)
\(=\frac{2+3+4+...+21}{2}=\frac{\left(21+2\right).20}{2}=23.10=230\)
Với 20 là số số hạng của dãy 2, 3, 4, ...., 21
Huong dẫn: \(1+2+...+n=\frac{n\left(n+1\right)}{2}\) ( n\(\in\)N*) áp dụng vào từng cái ngoặc
\(S=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+.......+\frac{1}{20}\left(1+2+3+......+20\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+......+\frac{1}{20}.\frac{20.21}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+......+\frac{21}{2}=\frac{2+3+4+.....+21}{2}=\frac{20.23}{2}=230\)
1 + 1/2 . (1+2) + 1/3 . (1 + 2 + 3) +...+ 1/20 . (1 + 2 + 3 +...+ 20)
= 1 + 1/2 . 2 . 3 : 2 + 1/3 . 3 . 4 : 2 + ... + 1/20 . 20 . 21 : 2
= 2/2 + 3/2 + ... + 21/2
= 2 + 3 + ... + 21 / 2
= 230/2 = 115.