\(\frac{1}{1+2}\)+ \(\frac{1}{1+2+3}\)+ ... + 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2020

\(\frac{1}{7}\cdot\frac{2}{9}+\frac{1}{9}\cdot\frac{3}{7}+\frac{1}{7}\cdot\frac{4}{9}\)

\(=\frac{2}{7}\cdot\frac{1}{9}+\frac{1}{9}\cdot\frac{3}{7}+\frac{4}{7}\cdot\frac{1}{9}\)

\(=\frac{1}{9}\left(\frac{2}{7}+\frac{3}{7}+\frac{4}{7}\right)\)

\(=\frac{1}{9}\cdot\frac{9}{7}=\frac{1}{7}\)

7 tháng 6 2020

\(\frac{1}{7}.\frac{2}{9}+\frac{1}{9}.\frac{3}{7}+\frac{1}{7}.\frac{4}{9}\)

\(=\frac{2}{7}.\frac{1}{9}+\frac{1}{9}.\frac{3}{7}+\frac{4}{7}.\frac{1}{9}\)

\(=\frac{1}{9}.\left(\frac{2}{7}+\frac{3}{7}+\frac{4}{7}\right)\)

\(=\frac{1}{9}.\frac{9}{7}\)

\(=\frac{1}{7}\)

18 tháng 4 2021

a

\(5\frac{4}{7}:x+=13\)

\(\frac{39}{7}:x=13\)

\(x=\frac{39}{7}:13\)

\(x=\frac{3}{7}\)

18 tháng 4 2021

\(\frac{4}{7}x=\frac{9}{8}-0,125\)

\(\frac{4}{7}x=1\)

\(x=1:\frac{4}{7}\)

\(x=\frac{7}{4}=1\frac{3}{4}\)

1 tháng 7 2019

a) \(2x-\frac{2}{3}-7x=\frac{3}{2}-1\\ 2x-7x-\frac{2}{3}=\frac{1}{2}\\ -5x=\frac{1}{2}+\frac{2}{3}\\ -5x=\frac{7}{6}\\ x=\frac{7}{6}:\left(-5\right)\\ x=\frac{-7}{30}\)Vậy \(x=\frac{-7}{30}\)

b) \(\frac{3}{2}x-\frac{2}{5}=\frac{1}{3}x-\frac{1}{4}\\ \frac{3}{2}x-\frac{1}{3}x=\frac{2}{5}-\frac{1}{4}\\ \frac{7}{6}x=\frac{3}{20}\\ x=\frac{3}{20}:\frac{7}{6}\\ x=\frac{9}{70}\)Vậy \(x=\frac{9}{70}\)

c) \(\frac{2}{3}-\frac{5}{3}x=\frac{7}{10}x+\frac{5}{6}\\ \frac{2}{3}-\frac{5}{6}=\frac{7}{10}x+\frac{5}{3}x\\ \frac{-1}{6}=\frac{71}{30}x\\ x=\frac{-1}{6}:\frac{71}{30}\\ x=\frac{-5}{71}\)Vậy \(x=\frac{-5}{71}\)

d) \(2x-\frac{1}{4}=\frac{5}{6}-\frac{1}{2}x\\ 2x+\frac{1}{2}x=\frac{5}{6}+\frac{1}{4}\\ \frac{5}{2}x=\frac{13}{12}\\ x=\frac{13}{12}:\frac{5}{2}\\ x=\frac{13}{30}\)Vậy \(x=\frac{13}{30}\)

e) \(3x-\frac{5}{3}=x-\frac{1}{4}\\ 3x-x=\frac{5}{3}-\frac{1}{4}\\ 2x=\frac{17}{12}\\ x=\frac{17}{12}:2\\ x=\frac{17}{24}\)Vậy \(x=\frac{17}{24}\)

1 tháng 7 2019

Èo, chăm thế? Chăm hơn cả mik cơ, gần 11 h rồi onl thì thấy bài được bạn HISI làm hết rồi :((

a) \(\frac{53}{101}\cdot-\frac{13}{97}+\frac{53}{101}\cdot-\frac{84}{97}\)

\(=\frac{53}{101}\cdot\left(-\frac{13}{97}-\frac{84}{97}\right)\)

\(=\frac{53}{101}\cdot\left(-1\right)\)

\(=-\frac{53}{101}\)

24 tháng 6 2020

 P \(=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\) 

P\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{50^2-1}{50^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)

P\(=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)

P\(=\frac{1.51}{50.2}=\frac{51}{100}\)

14 tháng 4 2017

chỉ cần ns 1 từ dễ

13 tháng 7 2020

bài 1 tắt quá

13 tháng 7 2020

Câu 1:

Đặt: \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+....+\frac{1}{100^2}\)

\(=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+....+\frac{1}{100.100}\)

\(A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}\)

\(\Rightarrow A< \frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

Vậy:.............

Câu 2:

\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{98}+1\right)\left(\frac{1}{99}+1\right)\)

\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{98}+\frac{98}{98}\right)\left(\frac{1}{99}+\frac{99}{99}\right)\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{99}{98}.\frac{100}{99}\)

\(=\frac{3.4.5....99.100}{2.3.4...98.99}\)

\(=\frac{100}{2}=50\)