Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số mét đường cả 3 tổ phải sửa là B, số mét đường cả 3 tổ theo dự định lần lượt là: x1, y1, z1 và khi phải sửa là x2, y2, z2
Ta có:
\(\dfrac{x1}{5}=\dfrac{y1}{6}=\dfrac{z1}{7}=\dfrac{x1+y1+z1}{5+6+7}=\dfrac{B}{18}\)
\(\Rightarrow x1=5\dfrac{B}{18},y1=6\dfrac{B}{18}=\dfrac{B}{3},z1=7\dfrac{B}{18}\left(1\right)\)
\(\dfrac{x2}{4}=\dfrac{y2}{5}=\dfrac{z2}{6}=\dfrac{x2+y2+z2}{4+5+6}=\dfrac{B}{15}\)
\(\Rightarrow x2=4\dfrac{B}{15},y2=5=\dfrac{B}{15}=\dfrac{B}{3},1=6\dfrac{B}{15}=2\dfrac{B}{5}\left(2\right)\)
Từ (1) và (2) => z2 > z1
=> \(z2-z1=2\dfrac{B}{5}-7\dfrac{B}{18}=\dfrac{B}{90}\)
Vì: \(z2-z1=4\)
=> \(\dfrac{B}{90}=4\)
=> B = 90 x 4
=> B = 360
=> \(z2=\dfrac{4\times360}{15}=96\)
\(y2=\dfrac{360}{3}=120\)
\(z2=\dfrac{2\times360}{5}=144\)
=> Số mét đường của ba tổ phải sửa lần lượt là: 96m, 120m, 144m
Gọi chiều dài quãng đường dự tính tổ 1, 2, 3 phải làm lúc ban đầu là x, y, z ( m)' và lúc chia lại theo thứ tự đó là x' , y', z'. Theo giả thiết thì :
{ x/5 = y/6 = z/7
{ x'/4 = y'/5 = z'/6
Theo t/c tỷ lệ thức:
{ x/5 = y/6 = z/7 = (x + y + z)/18 (1)
{ x'/4 = y'/5 = z'/6 = (x' + y' + z')/15 (2)
Rõ ràng x + y + z = x' + y' + z' = tổng chiều dài quãng đường phải làm nên từ (1) và (2) =>
{ x'/x = 24/25 < 1 => x' < x
{ y'/y = 1 => y' = y
{ z'/z = 36/35 > 1 => z' > z
Theo giả thiết sau khi chia lại có 1 tổ phải làm nhiều hơn 10m so với lúc đầu => chỉ có tổ 3 thỏa mãn => z' = z + 10 => (z + 10)/z = 36/35
<=> 35z + 350 = 36z => z = 350 (m) thay vào (1)
x/5 = z/7 = 350/7 = 50 => x = 250 (m)
y/6 = z/7 = 350/7 = 50 => y = 300 (m)
Đề này chưa chính xác em nhé, em xem lại đề đi, vì khi chia lại theo tỉ lệ mới thì tỉ lệ mới phải khác, ở đây vẫn như cũ là: 3:4:5
Gọi số mét đường mối đội dự định ban đầu là a,b,c, ta có \(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}\)
Theo tính chất dãy tỉ số = nhau có \(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}=\frac{a+b+c}{5+6+7}=\frac{a+b+c}{18}\)
số mét đường thực tế là a',b',c', ta có \(\frac{a'}{4}=\frac{b'}{5}=\frac{c'}{6}\)(*)
Theo tính chất dãy tỉ số = nhau có \(\frac{a'}{4}=\frac{b'}{5}=\frac{c'}{6}=\frac{a'+b'+c'}{4+5+6}=\frac{a'+b'+c'}{14}\)
=> \(\frac{a}{5}:\frac{a'}{4}=\frac{a+b+c}{18}:\frac{a'+b'+c'}{14}=\frac{14}{18}=\frac{7}{9}\)(vì a+b+c = a'+b'+c' do tổng số mét đường ko đổi)
=> \(\frac{4a}{5a'}=\frac{7}{9}\)
=> \(\frac{a}{a'}=\frac{35}{36}\)=> 36a = 35a'
Mà a' - a = 10 mét => a' = a+10 => 36a = 35(a+10)
=> 36a = 35a + 350
=> a = 350
=> a' = 360
THAY a'=360 vào biểu thức (*) tính ra b'=450, c'=540