K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm

8 tháng 10 2018

\(a,\left(n+5\right)⋮\left(n+2\right)\)

\(\left(n+2+3\right)⋮\left(n+2\right)\)

\(\Rightarrow3⋮\left(n+2\right)\)

\(\Rightarrow n+2\in\left(1;-1;3;-3\right)\)

\(\Rightarrow n\in\left(-1;-3;1;-5\right)\)

b,c,d Tự làm

* Do p > 3 , mà một số > 3 khi chia cho 3 có hai trường hợp xảy ra : 3k + 1 ; 3k + 2.(k thuộc N)(ko lấy 3k vì 3k là hợp số)

Với p = 3k + 1

=> p + 8 = 3k + 1 + 8 = 3k + 9 ko phải là SNT

Với p = 3k + 2

=> p + 8 = 3k + 10 là SNT

=> p + 100 = 3k + 2 + 100 = 3k + 102 là hợp số .

Vậy p + 100 là hợp số

7 tháng 5 2020

a, \(\frac{3n-2}{4n-3}\)

Gọi d = ƯCLN(3n - 2, 4n - 3)

\(\Rightarrow\left\{{}\begin{matrix}3n-2⋮d\\4n-3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3\left(3n-2\right)⋮d\\2\left(4n-3\right)⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}9n-6⋮d\\8n-6⋮d\end{matrix}\right.\)

\(\Rightarrow\) 9n - 6 - 8n + 6 \(⋮\) d

\(\Rightarrow\) 1 \(⋮\) d

\(\Rightarrow\) d = 1

\(\Rightarrow\) ƯCLN(3n - 2, 4n - 3) = 1

Vậy phân số \(\frac{3n-2}{4n-3}\) tối giản

b, \(\frac{4n+1}{6n+1}\)

Gọi d = ƯCLN(4n + 1, 6n + 1)

\(\Rightarrow\left\{{}\begin{matrix}4n+1⋮d\\6n+1⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}12n+3⋮d\\12n+2⋮d\end{matrix}\right.\)

\(\Rightarrow\) 12n + 3 - 12n - 2 \(⋮\) d

\(\Rightarrow\) 1 \(⋮\) d

\(\Rightarrow\) d = 1

\(\Rightarrow\) ƯCLN(4n + 1, 6n + 1) = 1

Vậy phân số \(\frac{4n+1}{6n+1}\) tối giản

Chúc bn học tốt

2 tháng 2 2018

a)\(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}.\text{ Để là số nguyên âm thì }\frac{5}{n-2}< 1\Rightarrow-6< n-2< 0\)

\(\Rightarrow-4< n< 2\)

NHững câu còn lại lm tưng tự!

8 tháng 8 2016

Bài 1:

\(\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=3-\frac{5}{3n+2}\in Z\)

\(\Rightarrow5⋮3n+2\)

\(\Rightarrow3n+2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

\(\Rightarrow3n\in\left\{-1;-3;3;-7\right\}\)

Vì \(n\in Z\) suy ra \(n\in\left\{-1;1\right\}\)

Bài 3:

\(\frac{n^2+4n-2}{n+3}=\frac{n\left(n+3\right)+n-2}{n+3}=\frac{n\left(n+3\right)}{n+3}+\frac{n-2}{n+3}=n+\frac{n-2}{n+3}\in Z\)

\(\Rightarrow n-2⋮n+3\)

\(\Rightarrow\frac{n-2}{n+3}=\frac{n+3-5}{n+3}=\frac{n+3}{n+3}-\frac{5}{n+3}=1-\frac{5}{n+3}\in Z\)

\(\Rightarrow5⋮n+3\)

\(\Rightarrow n+3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

\(\Rightarrow n\in\left\{-2;-4;2;-8\right\}\)

 

 

 

8 tháng 8 2016

bạn ra bình chọn cũng như không

9 tháng 12 2018

mình chia thành hai phần a và b

a) Mọi số nguyên tố n lớn hơn 2 đều không chia hết cho 2 ---> n có dạng 2k+1 (n thuộc N, n> 0) 
...Xét 2 TH : 
...+n chẵn (k = 2n) ---> n = 2k+1 = 2.2n + 1 = 4n+1 
...+ n lẻ (k = 2n-1) ---> n= 2k+1 = 2.(2n-1) + 1 = 4n-1 
...Vậy n luôn có dạng 4n+1 hoặc 4n-1 

b) Mọi số nguyên tố n lớn hơn 3 đều ko chia hết cho 3 ---> n có dạng 3k+1 hoặc 3k-1 
...Nếu k lẻ thì n sẽ chẵn và nó ko phải là số nguyên tố (vì n > 3). 
...Vậy k phải chẵn, k = 2n với n > 0 (để n > 3).Xét 2 TH : 
...+ n = 3k+1 = 3.2n + 1 = 6n+1 
...+ n = 3k-1 = 3.2n -1 = 6n - 1 
...Vậy n luôn có dạng 6n+1 hoặc 6n-1.

9 tháng 12 2018

kb với mình luôn

21 tháng 4 2016

dễ mak 

chỉ cần nói cái dưới là u của cái trên

rồi tim ra 1 số chia hết cái dưới