K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

a, n2+n+6=n(n+1)+6

Vì n(n+1) là tích 2 số liên tiếp => n(n+1) có c/s tận cùng là 0,2,6

=> n(n+1)+6 có c/s tận cùng là 6,8,2 không chia hết cho 5

=> n2+n+6 không chia hết cho 5

b, n3-n=n(n2-1)=n(n-1)(n+1)

Vì n(n-1)(n+1) là tích 3 số liên tiếp => n(n-1)(n+1) chia hết cho 6

=>n3-n chia hết cho 6

26 tháng 7 2018

a) ta có n2+n+6 = n(n+1) + 6

vì n(n+1) là tích hai số nguyên liên tiếp => n(n+1) có tận cùng là một trong các số 0;2;6

=> n(n+1) + 6 có tận cùng là một trong các số 6;8;2 ko chia hết cho 5 vì muốn chia hết cho 5 phải có tận cùng là 0 hoặc 5

vậy n2+n+6 ko chia hết cho 5 (đpcm)

b) ta có n3-n = n3- n2+n2-n = (n3-n2)+(n2-n) = n(n2-n)+(n2-n) = (n+1)(n2-n) = (n+1)n(n-1)

vì (n+1)n(n-1) là tích của 3 số nguyên liên tiếp nên tích đó  chia hết cho 2 và 3 => (n+1)n(n-1) chia hết cho 6

=> n3-n chia hết cho 6 (đpcm)

hok tốt và nhớ k cho mik nha

                                   

a: \(=n\left(n+1\right)+6\)

Vì n;n+1 là tích của hai số liên tiếp

nên n(n+1) có chữ số tận cùng là 0;2;6

=>Nếu n(n+1)+6 thì sẽ có chữ số tận cùng là 6;8;12

=>n(n+1)+6 ko chia hết cho 5

b: =n(n-1)(n+1)

Vì n;n-1;n+1 là ba số liên tiếp

nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)

hình như câu 2 Nguyễn Hoài Linh copy

20 tháng 9 2024

Đây là toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau: 

                             Giải

Chứng minh bằng phương pháp phản chứng:

Giả sử A ⋮ 121 ∀ n khi đó ta có với n = k( k \(\in\)n) thì: 

A = k2 + 3k + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)

Với n = k + 1 thì

A = (k + 1)2 + 3(k + 1) + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N) 

⇒ (k + 1).(k + 1) + 3k + 3 + 5⋮ 121

⇒ k2 + k + k + 1 + 3k + 3 + 5 ⋮ 121

⇒ (k2 + 3k + 5) + (k + k) + (1 + 3)⋮ 121

⇒ (k2 + 3k + 5) + 2k + 4 ⋮ 121

⇒ 2k + 4 ⋮ 121

⇒ 2.(k + 2) ⋮ 121

⇒ k + 2 ⋮ 121 (1)

Mà ta có: k2 + 3k + 5 ⋮ 121

               ⇒ k(k + 2) + (k + 2) + 3 ⋮ 121

              ⇒ (k + 2)(k + 1) + 3 ⋮ 121 (2)

Kết hợp (1) và (2) ta có: 3 ⋮ 121 (vô lý)

Vậy điều giả sử là sai hay 

A = n2 + 3n + 5 không chia hết cho 121 với mọi n (đpcm)

 

             

 

     

 

17 tháng 2 2020

 \(A=5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)=25^n+5^n-18^n-12^n\)

Ta có: 25≡4 (mod 7) và 18≡4 (mod 7)

\(\Rightarrow25^n\text{≡}4^n\left(mod7\right)\)và \(18^n\text{≡}4\left(mod7\right)\)

\(\Rightarrow25^n-18^n⋮7\)(1)

Chứng minh tương tự, ta được \(5^n-12^n⋮7\)(2)

Từ (1) và (2) suy ra \(25^n+5^n-18^n-12^n⋮7\)

Tương tự như trên ta cũng chứng minh được \(25^n+5^n-18^n-12^n⋮13\)

Mà (7;13) = 1 nên \(25^n+5^n-18^n-12^n⋮91\)

Vậy A chia hết cho 91 với mọi n thuộc N (đpcm)

1 tháng 10 2018

\(5^5-5^4+5^3=5^3.5^2-5^3.5+5^3=5^3.(5^2-5+1)\)

\(=5^3.21=5^3.3.7 \vdots 7 \Rightarrow 5^5-5^4+5^3\vdots 7\)

Tương tự :

b,\(7^6+7^5-7^4=7^4.(7^2+7-1)=7^4.55=7^4.5.11\vdots11\)

\(\Rightarrow 7^6+7^5-7^4\vdots 11\)

c,\(24^{54}.54^{24}.2^{10}=(2^3.3)^{54}.(2.3^3)^{24}.2^{10}\)

\(=(2^3)^{54}.3^{54}.2^{24}.(3^3)^{24}.2^{10}\)

\(=(2^3)^{54}.(2^3)^8.2^3.(3^2)^{27}.(3^2)^{36}.2^{7}\)

\(=(2^3)^{63}.(3^2)^{63}.2^7=(2^3.3^2)^{63}.2^7=72^{63}.2^7 \vdots 72^{63}\)

d,\(3^{n+3}+3^{n+1}+2^{n+3}.2^{n+2}=3^{n+1}.3^2+3^{n+1}+2^{n+3}.2^{n+2}\)

\(=3^{n+1}.(3^2+1)+2^{2n+5}=10.3^{n+1}+2.2^{2n+4}\)

\(=2.(5.3^{n+1}+2^{2n+4})\)

Lỗi đề rồi!!!!!!!!!! tớ thay số vào không đúng! 

1 tháng 10 2018

lỗi mình câu cuối thôi

Nhiều thế không ai làm đâu bạn          

9 tháng 6 2016

nhiều nhỉ lấy ở đâu đấy !!!!!!!!!!!!!!!!!!!!!!!!!

7 tháng 8 2015

http://olm.vn/hoi-dap/question/160314.html

4 tháng 1 2016

THONG CAM MINH MOI \(y=\frac{1}{x^2+\sqrt{x}}\)7 TUOI