Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

No Name:Đây chính là bất đẳng thức Schur bậc 3
Do a,b,c bình đẳng ta giả sử \(a\ge b\ge c\)
Đặt \(a-b=x;b-c=y\)
Khi đó BĐT tương đương với:
\(c\left(x^2+xy+y^2\right)+x^2\left(x+2y\right)\ge0\left(true\right)\)
Vậy BĐT được chứng minh

\(\dfrac{a^3-b^3}{ab^2}+\dfrac{b^3-c^3}{bc^2}+\dfrac{c^3-a^3}{ca^2}\ge0\)
\(\Leftrightarrow\dfrac{a^2}{b^2}-\dfrac{b}{a}+\dfrac{b^2}{c^2}-\dfrac{c}{b}+\dfrac{c^2}{a^2}-\dfrac{a}{c}\ge0\)
Ta có: \(\left\{{}\begin{matrix}\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge\dfrac{2a}{c}\\\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{2b}{a}\\\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge\dfrac{2c}{b}\end{matrix}\right.\)
Cộng 3 cái vế theo vế rồi rút gọn cho 2 ta được ĐPCM

\(a+b+c=0\Rightarrow\hept{\begin{cases}a=-b-c\\b=-a-c\\c=-a-b\end{cases}}\)
\(ab+bc+ac=\left(-b-c\right).b+\left(-a-c\right).c+\left(-a-b\right).a\)
\(=-\left(a^2+b^2+c^2\right)-\left(ab+bc+ac\right)\)
\(\Rightarrow2.\left(ab+bc+ac\right)=-\left(a^2+b^2+c^2\right)\le0\)
\(\Rightarrow ab+bc+ac\le0\)(đpcm)
Boul đẹp trai_tán gái đổ 100%:mik có cách khác nè:3
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
Do \(a^2+b^2+c^2\ge0\Rightarrow2\left(ab+bc+ca\right)\le0\Rightarrowđpcm\)


Lời giải:
a)
Áp dụng bất đẳng thức AM-GM:
\(x^3+x^2+x+1\geq 4\sqrt[4]{x^3.x^2.x.1}=4\sqrt[4]{x^6}\)
\(\Rightarrow (x^3+x^2+x+1)^2\geq 16\sqrt{x^6}\)
\(\Leftrightarrow (x^3+x^2+x+1)^2\geq 16x^3\) (đpcm)
Dấu bằng xảy ra khi \(x=1\)
b)
Áp dụng BĐT AM-GM:
\(\frac{b+c}{a}.1\leq \left(\frac{\frac{b+c}{a}+1}{2}\right)^2=\frac{1}{4}\left(\frac{b+c+a}{a}\right)^2\)
\(\Rightarrow \frac{a}{b+c}\geq 4\left(\frac{a}{a+b+c}\right)^2\Leftrightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)
Thực hiện tương tự với cac phân thức còn lại và cộng theo vế thu được:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\geq \frac{2a+2b+2c}{a+b+c}=2\)
Dấu bằng xảy ra khi
\(\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=1\Rightarrow a+b+c=2a=2b=2c\)
\(\Rightarrow a=b=c\Rightarrow \frac{b+c}{a}=2\neq 1\) (vô lý)
Do đó dấu bằng không xảy ra
Vì vậy: \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\)
Bài 1:
Ta có: \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=-\left(a^2+b^2+c^2\right)\)
Ta thấy \(\left\{{}\begin{matrix}a^2\ge0\\b^2\ge0\\c^2\ge0\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge0\Rightarrow-\left(a^2+b^2+c^2\right)\le0\)
\(\Rightarrow2\left(ab+bc+ca\right)\le0\)
\(\Leftrightarrow ab+bc+ca\le0\left(đpcm\right)\)
Vậy...
Với \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ac+bc+ac\right)\)
Vì \(a^2\ge0;b^2\ge0;c^2\ge0\)(với mọi a,b,c\(\in\)R)
\(\Rightarrow\)\(a^2+b^2+c^2\ge0\) (đẳng thức xảy ra khi a=b=c=0)
\(\Rightarrow-2\left(ab+bc+ac\right)\ge0\)
\(\Rightarrow ab+bc+ac\le0\)(đpcm)