Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\left(\dfrac{x_1+1}{x_1-2}-\dfrac{x_2+1}{x_2-2}\right):\left(x_1-x_2\right)\)
\(=\dfrac{x_1x_2-2x_1+x_2-2-x_1x_2+2x_2-x_1+2}{\left(x_2-2\right)\left(x_1-2\right)}\cdot\dfrac{1}{x_1-x_2}\)
\(=\dfrac{-3x_1+3x_2}{\left(x_2-2\right)\left(x_1-2\right)}\cdot\dfrac{1}{x_1-x_2}=\dfrac{-3}{\left(x_2-2\right)\left(x_1-2\right)}\)
Trường hợp 1: x<2
=>\(\left(x_1-2\right)\left(x_2-2\right)>0\)
=>A<0
=>Hàm số nghịch biến
Trường hợp 2: x>2
=>\(\left(x_1-2\right)\left(x_2-2\right)>0\)
=>A<0
=>Hàm số nghịch biến
a: Khi x>0 thì y>0
=> Hàm số đồng biến
Khi x<0 thì y<0
=> Hàm số nghịch biến
b: Khi x>0 thì y<0
=> Hàm số nghịch biến
Khi x<0 thì y<0
=> Hàm số đồng biến
Câu 1:
a)
\(y=f\left(x\right)=2x^2\) | -5 | -3 | 0 | 3 | 5 |
f(x) | 50 | 18 | 0 | 18 | 50 |
b) Ta có: f(x)=8
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)
Ta có: \(f\left(x\right)=6-4\sqrt{2}\)
\(\Leftrightarrow2x^2=6-4\sqrt{2}\)
\(\Leftrightarrow x^2=3-2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)
hay \(x=\sqrt{2}-1\)
Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)
a, Để y = (m - 1)x + 2m - 3 là hàm số bậc nhất thì a \(\ne\) 0 \(\Leftrightarrow\) m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) 1
y = (m - 1)x + 2m - 3 đồng biến trên R \(\Leftrightarrow\) a > 0 \(\Leftrightarrow\) m - 1 > 0 \(\Leftrightarrow\) m > 1
y = (m - 1)x + 2m - 3 nghịch biến trên R \(\Leftrightarrow\) a < 0 \(\Leftrightarrow\) m - 1 < 0 \(\Leftrightarrow\) m < 1
b, f(1) = 2
\(\Leftrightarrow\) (m - 1).1 + 2m - 3 = 2
\(\Leftrightarrow\) m - 1 + 2m - 3 = 2
\(\Leftrightarrow\) m = 2
Với m = 2 ta có:
f(2) = (2 - 1).2 + 2.2 - 3 = 3
Vậy f(2) = 3
c, f(-3) = 0
\(\Leftrightarrow\) (m - 1).0 + 2m - 3 = 0
\(\Leftrightarrow\) 2m = 3
\(\Leftrightarrow\) m = 1,5
Vì m > 1 (1,5 > 1)
\(\Rightarrow\) m - 1 > 0
hay a > 0
Vậy hàm số y = f(x) = (m - 1).x + 2m - 3 đồng biến trên R
Chúc bn học tốt!
Bài 1:
a: Để hàm số đồng biến khi x>0 thì m-1>0
hay m>1
b: Để hàm số nghịch biến khi x>0 thì 3-m<0
=>m>3
c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0
hay 0<m<1
a, đồng biến khi m - 1 > 0 <=> m > 1
b, nghịch biến khi 3 - m < 0 <=> m > 3
c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0
Ta có m - 1 < m
\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)
Câu 1:
ĐKXĐ: x<>2
Lấy x1,x2 sao cho \(x_1< x_2\)
\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\left(\dfrac{x_1+1}{x_1-2}-\dfrac{x_2+1}{x_2-2}\right):\left(x_1-x_2\right)\)
\(=\dfrac{x_1x_2-2x_1+x_2-2-x_1x_2+2x_2-x_1+2}{\left(x_1-2\right)\left(x_2-2\right)}\cdot\dfrac{1}{x_1-x_2}\)
\(=\dfrac{-2\left(x_1-x_2\right)-\left(x_1-x_2\right)}{\left(x_1-2\right)\left(x_2-2\right)}\cdot\dfrac{1}{x_1-x_2}=\dfrac{-3}{\left(x_1-2\right)\left(x_2-2\right)}\)
TH1: \(x_1< 2;x_2< 2\)
\(\Leftrightarrow\left(x_1-2\right)\left(x_2-2\right)>0\)
=>A<0
=>Hàm số nghịch biến khi x<2
TH2: \(x_1>2;x_2>2\)
\(\Leftrightarrow\left(x_1-2\right)\left(x_2-2\right)>0\)
=>A<0
=>Hàm số nghịch biến khi x>2