K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: 
ĐKXĐ: x<>2

Lấy x1,x2 sao cho \(x_1< x_2\)

\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\left(\dfrac{x_1+1}{x_1-2}-\dfrac{x_2+1}{x_2-2}\right):\left(x_1-x_2\right)\)

\(=\dfrac{x_1x_2-2x_1+x_2-2-x_1x_2+2x_2-x_1+2}{\left(x_1-2\right)\left(x_2-2\right)}\cdot\dfrac{1}{x_1-x_2}\)

\(=\dfrac{-2\left(x_1-x_2\right)-\left(x_1-x_2\right)}{\left(x_1-2\right)\left(x_2-2\right)}\cdot\dfrac{1}{x_1-x_2}=\dfrac{-3}{\left(x_1-2\right)\left(x_2-2\right)}\)

TH1: \(x_1< 2;x_2< 2\)

\(\Leftrightarrow\left(x_1-2\right)\left(x_2-2\right)>0\)

=>A<0

=>Hàm số nghịch biến khi x<2

TH2: \(x_1>2;x_2>2\)

\(\Leftrightarrow\left(x_1-2\right)\left(x_2-2\right)>0\)

=>A<0

=>Hàm số nghịch biến khi x>2

22 tháng 4 2016

ai làm có thưởng 2điem

\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\left(\dfrac{x_1+1}{x_1-2}-\dfrac{x_2+1}{x_2-2}\right):\left(x_1-x_2\right)\)

\(=\dfrac{x_1x_2-2x_1+x_2-2-x_1x_2+2x_2-x_1+2}{\left(x_2-2\right)\left(x_1-2\right)}\cdot\dfrac{1}{x_1-x_2}\)

\(=\dfrac{-3x_1+3x_2}{\left(x_2-2\right)\left(x_1-2\right)}\cdot\dfrac{1}{x_1-x_2}=\dfrac{-3}{\left(x_2-2\right)\left(x_1-2\right)}\)

Trường hợp 1: x<2

=>\(\left(x_1-2\right)\left(x_2-2\right)>0\)

=>A<0

=>Hàm số nghịch biến

Trường hợp 2: x>2

=>\(\left(x_1-2\right)\left(x_2-2\right)>0\)

=>A<0

=>Hàm số nghịch biến

a: Khi x>0 thì y>0

=> Hàm số đồng biến

Khi x<0 thì y<0

=> Hàm số nghịch biến

b: Khi x>0 thì y<0

=> Hàm số nghịch biến

Khi x<0 thì y<0

=> Hàm số đồng biến

Câu 1: 

a) 

\(y=f\left(x\right)=2x^2\)-5-3035
f(x)501801850

b) Ta có: f(x)=8

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)

Ta có: \(f\left(x\right)=6-4\sqrt{2}\)

\(\Leftrightarrow2x^2=6-4\sqrt{2}\)

\(\Leftrightarrow x^2=3-2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)

hay \(x=\sqrt{2}-1\)

Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)

11 tháng 1 2021

a, Để  y = (m - 1)x + 2m - 3 là hàm số bậc nhất thì a \(\ne\) 0 \(\Leftrightarrow\) m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) 1

y = (m - 1)x + 2m - 3 đồng biến trên R \(\Leftrightarrow\) a > 0 \(\Leftrightarrow\) m - 1 > 0 \(\Leftrightarrow\) m > 1

 y = (m - 1)x + 2m - 3 nghịch biến trên R \(\Leftrightarrow\) a < 0 \(\Leftrightarrow\) m - 1 < 0 \(\Leftrightarrow\) m < 1

b, f(1) = 2 

\(\Leftrightarrow\) (m - 1).1 + 2m - 3 = 2

\(\Leftrightarrow\) m - 1 + 2m - 3 = 2

\(\Leftrightarrow\) m = 2

Với m = 2 ta có:

f(2) = (2 - 1).2 + 2.2 - 3 = 3

Vậy f(2) = 3

c, f(-3) = 0

\(\Leftrightarrow\) (m - 1).0 + 2m - 3 = 0

\(\Leftrightarrow\) 2m = 3

\(\Leftrightarrow\) m = 1,5

Vì m > 1 (1,5 > 1)

\(\Rightarrow\) m - 1 > 0

hay a > 0

Vậy hàm số y = f(x) = (m - 1).x + 2m - 3 đồng biến trên R

Chúc bn học tốt!

a) 

+) Hàm số đồng biến \(\Leftrightarrow m>1\)

+) Hàm số nghịch biến \(\Leftrightarrow m< 1\)

b) Ta có: \(f\left(1\right)=2\) 

\(\Rightarrow m-1+2m+3=2\) \(\Leftrightarrow m=0\)

\(\Rightarrow f\left(2\right)=\left(0-1\right)\cdot2+2\cdot0-3=-5\)

c) Hàm số là hàm hằng

 

Bài 1: 

a: Để hàm số đồng biến khi x>0 thì m-1>0

hay m>1

b: Để hàm số nghịch biến khi x>0 thì 3-m<0

=>m>3

c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0

hay 0<m<1

19 tháng 2 2022

a, đồng biến khi m - 1 > 0 <=> m > 1 

b, nghịch biến khi 3 - m < 0 <=> m > 3 

c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0 

Ta có m - 1 < m 

\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)