Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A = n^3-3n^2-n+3 = n^2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A chia hết cho 16(*)
mặt khác:
A = n^3-3n^2-n+3 = n^3 - n - 3(n^2 - 1) = n(n+1)(n-1) - 3(n^2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) chia hết cho 3 => A chia hết cho 3
n = 3k + 1 => (n -1) chia hết cho 3 => A chia hết cho 3
n = 3k + 2 => (n+1) = 3k + 3 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 (**)
(*) và (**) => A chia hết cho 3.16 = 48 (3,16 là 2 số nguyên tố cùng nhau).
b)A =n^12-n^8-n^4+1
=(n^8-1)(n^4-1)=(n^4+1)(n^4-1)^2
=(n^4+1)[(n^2+1)(n^2-1)]^2
=(n-1)^2*(n+1)^2*(n^2+1)^2*(n^4+1)
Ta có n-1 và n+1 là 2 số chẵn liên tiếp nên có 1 số chỉ chia hết cho 2 ,1 số chia hết cho 4 nên (n-1)(n+1) chia hết cho 8 => (n-1)^2*(n+1)^2 chia hết cho 64
Mặt khác n lẻ nên n^2+1,n^4+1 cũng là số chẵn nên (n^2+1)^2*(n^4+1) chia hết cho 2^3=8
Do đó : A chia hết cho 64*8=512
a, Áp dụng bđt Cauchy ta có
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
b, a(a+2)<(a+1)2
=>a2+2a<a2+2a+1(đúng)
Bạn tham khảo link này nhé: https://vn.answers.yahoo.com/question/index?qid=20100216060237AAIkOrJ
x+y=a+b => (x+y)2 =(a+b)2 => x2 +2xy+ y2 =a2 +2ab+b2 => xy=ab
ta sẽ chứng mính bằng phương pháp quy nạp.
Với n =1, n=2 thì đẳng thức đúng
Giả sử xn-1 +yn-1 = an-1 +bn-1; xn +yn = an +bn , ta sẽ chứng minh đẳng thức cũng đúng với n+1
\(x^{n+1}+y^{n+1}=\left(x^n+y^n\right)\left(x+y\right)-xy\left(x^{n-1}+y^{n-1}\right)=\left(a^n+b^n\right)\left(a+b\right)-\)ab(an-1 +bn-1 ) = an+1 + bn+1 (đúng)
vậy đẳng thức đúng với mọi n
+) Ta có : \(x^2+y^2=a^2+b^2\)
\(\Leftrightarrow x^2-a^2=b^2-y^2\)
\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\) ( * )
+) Ta có : \(x+y=a+b\)
\(\Leftrightarrow x-a=b-y\)
Thay \(x-a=b-y\) vào ( * ) ta được :
\(\left(b-y\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)
\(\Leftrightarrow\left(b-y\right)\left(x+a\right)-\left(b-y\right)\left(b+y\right)=0\)
\(\Leftrightarrow\left(b-y\right)\left[\left(x+a\right)-\left(b+y\right)\right]=0\)
\(\Leftrightarrow\left(b-y\right)\left(x+a-b-y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}b-y=0\\x+a-b-y=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}b=y\\x+a=b+y\end{cases}}\)
TH1 :\(b=y\)
\(\Rightarrow b-y=0\)
\(\Rightarrow x-a=0\)
\(\Rightarrow x=a\)
\(\Rightarrow x^n+y^n=a^n+b^n\) ( 1 )
TH2 : \(x+a=b+y\)
Mà \(x-a=b-y\)
\(\Rightarrow x+a+x-a=b+y+b-y\)
\(\Rightarrow2x=2b\)
\(\Rightarrow x=b\)
\(\Rightarrow a=y\)
\(\Rightarrow x^n+y^n=a^n+b^n\) ( 2 )
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\) đpcm