Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
9999931999 = 9999931996 . 9999933 = (9999934)499 . 9999933 = (.....1)499 . (.....7 )
\(\Rightarrow\) 9999931999 có tận cùng là 7
5555571997 = 555557 . 5555571996 = 555557 . ( 5555574 )499 = 555557 . ( ....1)499
=> 5555571997 có tận cùng là 7
A = 9999931999 - 5555571997
A = ( .....7 ) - ( .....7 )
A= ( .....0)
=> A có tận cùng là 0
=> \(A⋮5\)
Bài 3 :
Cách 1 :
Ta có:
A = 99999311999- 5555571997
= 9999931998 .999993 - 5555571996 . 555557
= (9999932)999 .999993 - (5555572 ) 998 . 555557
=(...9)999 .999993 - (...9)998 .555557
= (...9). 999993 - (...1).555557
=(...7)-(...7) =(...0)
Chữ số tận cùng của A= 9999931999 -5555531997 là 0.
=> A= 9999931999 -5555531997 chia hết cho 5. =>đpcm.
hoi phuc tap voi ban neu ban chua hoc ve dong du
co 8^10 dong du voi 1 khi chia cho 9 =>8^100 dong du voi 1 khi chia 9
=>8^100 -1 chia het cho 9
Hỏi trên mạng về đồng dư bạn nhé
Ta co:
\(\frac{5+a}{8a}\)= \(\frac{-1}{12}\)
<=> 12(5+a)=-8a
<=>60+12a=-8a
<=>-20a=60
<=>a=-3
nhớ mik nha:)
theo bài ra ta có \(\frac{a+5}{8a}\)=\(\frac{-1}{12}\)suy ra (5+a).12=-8a suy ra 60+12a+8a=0 suy ra 20a=-60 suy ra a=-3
vậy..............
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
4,Tìm a, b ∈N, biết:
a,10a+168=b2
b,100a+63=b2
c,2a+124=5b
d,2a+80=3b
Giải:
a) xét \(a=0\)
\(\Rightarrow10^a+168=1+168=169=13^2\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=13\end{cases}}\)
xét \(a\ne0\)
=>10a có tận cùng bằng 0
Mà 10a+168 có tận cùng bằng 8 không phải số chính phương ( các số chính phương chỉ có thể tận cùng là:0;1;4;5;6;9 )
=>không có b
vậy \(\hept{\begin{cases}a=0\\b=13\end{cases}}\)
b)Chứng minh tương tự câu a)
c) \(5^b\)là số lẻ với b là số tự nhiên và tận cùng là 5
\(\Rightarrow2^a+124\)cũng là số lẻ và tận cùng là 5
Mà \(2^a+124\) là số lẻ khi và chỉ khi a=0
ta có :
2^0 + 124 = 5^b
=> 125 = 5^b
=> 5^3 = 5^b
=> b = 3
Vậy a = 0 ; b =3
d)Chứng minh tương tự như 2 câu mẫu trên
3,Cho B=34n+3+2013
Chứng minh rằng B⋮10 với mọi n∈N
Giải:
Ta có :
34n+3+2013
=(34)n+27+2013
=81n+2040
Phần sau dễ rồi ,mk nghĩ bạn có thể giải đc
1, Chứng minh:
B= 8888...888 - 9 + n ⋮9
n chữ số 8
Giải:
Cách 1:
Ta có \(B=888..888-9+n\)(n chữ số 8)
\(\Rightarrow B=888...8888-8n+9n-9\)(n chữ số 8)
\(\Rightarrow B=8\left(11...111-n\right)+9\left(n-1\right)\)(n chữ số 1)
Có \(111..111-n⋮9\) vì số có các chữ số cộng lại bằng số n mà khi trừ đi số n thì số đó sẽ chia hết cho 9 mà 9\(9\left(n-1\right)⋮9\)\(\Rightarrow8\left(11.1111-n\right)+9\left(n-1\right)⋮9\)\(\Rightarrow888..888-9+n⋮9\)Hay \(B⋮9\left(dpcm\right)\)
Cách 2 ( câu 1)
\(B=888...888-9+n\)
Giả sử \(B⋮9\)
Biết rằng : 1 số tự nhiên bất kì đều được viết dưới dạng tổng của 1 số chia hết cho 9 với tổng các chữ số của nó nên ta được :
\(888....888=9k+\left(8+8+8+......+8\right)\)
\(\Rightarrow B=9k+8n-9+n\)
\(\Leftrightarrow B=9k+9n-9=9\left(k+n-1\right)\)
Mà \(9\left(k+n-1\right)⋮9\)\(\Rightarrow B⋮9\left(dpcm\right)\)