K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Bài 1:

Ta có:

\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=\left(ac\right)^2+2acbd+\left(bd\right)^2+\left(ad\right)^2-2abcd+\left(bc\right)^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=a^2.\left(c^2+d^2\right)+b^2.\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)=VT\)

\(\rightarrow\)đpcm

Chúc bạn học tốt!!!

23 tháng 6 2017

Bài 1:

\(VT=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2=VP\)

\(\Rightarrowđpcm\)

Bài 2

Đặt
\(A=x^3+9x^2+27x+27=\left(x+3\right)^3\)

Thay x = 97

\(\Leftrightarrow A=100^3=1000000\)

Vậy A = 1000000 khi x = 97

18 tháng 6 2015

BÀI 1: rút gọn biểu thức    (x- y +z)2 + (z-y)2 +2(x-y+z).(y-z)

(x- y +z)2 + (z-y)2 +2(x-y+z).(y-z)

=(x- y +z)2 +(z-y)2+(x-y+z)(y-z)+(x-y+z)(y-z)

=(x-y+z)2+(x-y+z)(y-z)+(z-y)2+(x-y+z)(y-z)

=(x-y+z)2+(x-y+z)(y-z)+(z-y)2-(x-y+z)(z-y)

=(x-y+z)(x-y+z+y-z)+(z-y)[z-y-(x-y+z)]

=(x-y+z)x+(z-y)(z-y-x+y-z)

=x2-xy+xz+(z-y)(-x)

=x2-xy+xz-xz+xy

=x2

 

 

12 tháng 10 2016

giải câu 3

9 tháng 8 2017

\(\left(5-xy\right)^2=25-10xy+x^2y^2\)

\(\left(3-2y\right)^2=9-12y+4y^2\)

\(\left(3+x^2\right)\left(3-x^2\right)=9-x^4\)

\(\left(5x-2y\right)\left(25x+10xy+4y^2\right)=\left(5x-2y\right)\left(5x+2y\right)=25x^2-4y^2\)\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)=\left(3x+y\right)\left(3x-y\right)=9x^2-y^2\)

24 tháng 2 2017

Câu 1 :

ab = c ; bc = 4a ; ac = 9b => ab.bc.ac = c.4a.9b

=> (abc)2 = abc.36 => (abc)2 - 36.abc = 0 => abc(abc - 36) = 0

=> abc = 0 hoặc abc = 36

+) Với abc = 0 => a = 0 ; b = 0 ; c = 0

+ ) Với abc = 36 => c2 = 36 = 62 = ( - 6 )2 => c = 6 hoặc c = - 6

TH1 : c = 6 => bc = 4a => 36 : a = 4a => 36 : 4 : a = a => 9 = a2 => a = { - 3; 3 }

TH2 : c = - 6 tương tự cũng tìm đc a , b nha !!!

Câu 2 : a ) |5x - 3| < 2

<=> - 2 < 5x - 3 < 2

<=> - 1 < 5x < 5

=> - 1/5 < x < 1

=> x = 0

b ) |3x + 1| > 4

<=> 3x + 1 > 4 hoặc - (3x + 1) > 4

<=> 3x > 3 hoặc - 3x > 5

<=> 3x > 3 hoặc 3x < - 5

=> x > 1 

c ) |4 - x| + 2x = 3

<=> |4 - x| = 3 - 2x 

ĐK : 3 - 2x >= 0 => x =< 3/2

TH 1 : 4 - x = 3 - 2x

<=> 4 - 3 = - 2x + x

<=> - x = 1

=> x = - 1

TH 2 : x - 4 = 3 - 2x

<=> x + 2x = 3 + 7

<=> 3x = 7

=> x = 7/3 (loại)

Vậy x = - 1

Câu 3 : A = |x| + |8 - x| >= |x + 8 - x| = 8

Dấu "=" xảy ra <=> x(8 - x) >= 0 => 0 =< x =< 8

Câu 4 : 

22 + 42 + ..... + 202

= ( 1.2 )2 + (2.2)2 + ..... + (2.10)2

= 12.22 + 22.22 + ....... + 22.102

= 22(12 + 22 + ..... + 102)

= 4.385

= 1540

Bài 5 tự vẽ hình và làm nhé

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:Dương...
Đọc tiếp

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.

Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.

Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.

Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.

Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:

  1. Dương với mọi x, y khác 0.
  2. Âm với mọi x, y khác 0.

Bài 6: Cho các đa thức A = 5x2 + 6xy – 7y2; B = -9x2 – 8xy + 11y2; C = 6x2 + 2xy – 3y2.

Chứng tỏ rằng: A, B, C không thể cùng có giá trị âm.

Bài 7: Cho ba số: a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng: ab + 2bc + 3ca ≤ 0.

Bài 8: Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5.

Bài 9: Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.

Bài 10: Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số.

Bài 11: Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng nếu 5a + b + 2c = 0 thì P(2).P(-1) ≤ 0.

Bài 12: Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.

Bài 13: Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.

Bài 14: Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ. Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.

Bài 15: Tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số đó.

Bài 16: Chứng minh rằng đa thức P(x) = x3 – x + 5 không có nghiệm nguyên.

cần gấp nha các bạn giải giùm mình PLEASE

3
1 tháng 5 2018

Đăng từng bài thoy nha pn!!!

Bài 1:

Có : 2009 = 2008 + 1 = x + 1

Thay 2009 = x + 1 vào biểu thức trên,ta có : 

  x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010

= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)

= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1

= -2

1 tháng 5 2018

mình cũng chơi truy kich