\(3^2+3^3+3^4+...+3^{101} \) chia hết cho 120.

2. Chứng tỏ rằ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

1. Chứng minh rằng: 3^2+3^3+3^4+...+3^101 chia hết cho 120.

Ta có:

A=3^2+3^3+3^4+...+3^101 

= (3^2+3^3+3^4+3^5) + ( 3^6+3^7+3^8+3^9) +.... + ( 3^98 + 3^99 + 3^100 + 3^101)

= 3.(3+3^2+3^3+3^4) + 3^5.(3+3^2+3^3+3^4) +....+ 3^97.(3+3^2+3^3+3^4)

= 120.(3+3^5+...+3^97) chia hết cho 120

 (đ.p.c.m)

:) câu 2 em chịu

8 tháng 7 2018

=(3^2+3^3+3^4+3^5)+......+(3^98+3^99+3^100+3^101)

=3.(3+3^2+3^3+3^4)+.....+3^97.(3+3^2+..+3^4)

=3.120+.......+3^97.120

=120.(3+...+3^97) chia hết cho 120

1 tháng 12 2021

vì tất cả các số nguyên tố khác 2 đều là số lẻ mà số lẻ nhân số lẻ bằng số lẻ nên chúng chia cho 2 dư 1

29 tháng 11 2015

cho1 tick rồi mình giải chi tiết cho, ha

9 tháng 7 2018

Số chính phương khác 2 và 3 có dạng:\(6k+1,6k+5\)(k\(\in\)N*)

Nếu số đó có dạng \(6k+1\) thì \(\left(6k+1\right)^2=\left(6k\right)^2+2.6k.1+1=36k^2+12k+1\) chia 12 dư 1

Nếu số đó có dạng \(6k+5\) thì \(\left(6k+5\right)^2=\left(6k\right)^2+2.6k.5+5^2=36k^2+60k+25\) chia 12 dư 1

Vậy ta có điều phải chứng minh

2 tháng 4 2016

2011 du 4 va 6

29 tháng 3 2017

Gọi số cần tìm là : \(a^2\left(a\ne2;3\right)\)

Do a là số nguyên tố khác 2

   \(\Rightarrow a\) lẻ  \(\Leftrightarrow a^2\) lẻ 

\(\Rightarrow a^2:4\) dư 1

\(\Rightarrow\left(a^2-1\right)⋮4^{\left(1\right)}\)

Do a là số nguyên tố khác 3 nên a không chia hết cho 3 => \(a^2\) không chia hết cho 3

\(\Rightarrow a^2:3\) dư 1

\(\Rightarrow a^2-1⋮3^{\left(2\right)}\)

Từ (1) và  \(\left(2\right)\Rightarrow\left(a^2-1\right)⋮3;4\) . Mà ta có 3 và 4 là hai số nguyên tố cùng nhau 

\(\Rightarrow\left(a^2-1\right)⋮3.4\\ \Rightarrow\left(a^2-1\right)⋮12\) 

\(\Rightarrow a^2:12\) dư 1

5 tháng 2 2020

hfcjhbnkvfxgchjsaihaydung