Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\( a)\sqrt {4{x^2} - 4x + 1} = 3\\ \Leftrightarrow \sqrt {{{\left( {2x - 1} \right)}^2}} = 3\\ \Leftrightarrow \left| {2x - 1} \right| = 3\\ T{H_1}:2x - 1 \ge 0 \Rightarrow x \ge \dfrac{1}{2}\\ 2x - 1 = 3\\ \Leftrightarrow 2x = 3 + 1\\ \Leftrightarrow 2x = 4\\ \Leftrightarrow x = \dfrac{4}{2} = 2\left( {TM} \right)\\ T{H_2}:2x - 1 < 0 \Rightarrow x < \dfrac{1}{2}\\ - \left( {2x - 1} \right) = 3\\ \Leftrightarrow - 2x + 1 = 3\\ \Leftrightarrow - 2x = 3 - 1\\ \Leftrightarrow - 2x = 2\\ \Leftrightarrow x = - \dfrac{2}{2} = - 1\left( {TM} \right) \)
Vậy...
1 a) \(\sqrt{4x^2-4x+1}=3\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\Leftrightarrow\left|2x-1\right|=3\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b) Với x > 0 ; y > 0,ta có :
\(\left(\sqrt{x}+\sqrt{y}\right)\left(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\right)=\frac{\left(\sqrt{x}+\sqrt{y}\right)\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)=x-y\)
\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)
\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)
\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)
\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)
\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé
\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)
ta có:\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right)\cdot\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=x-y\)
vậy.....
\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right).\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)
\(=\frac{\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)
\(=x-y\)( đpcm )
\(\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\)\(\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}\)
\(=-\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{z}-\sqrt{x}\right)}-\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{y}\right)}\)\(-\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)
\(=\frac{-x\left(\sqrt{y}-\sqrt{z}\right)-y\left(\sqrt{z}-\sqrt{x}\right)-z\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)
\(=\frac{-x\sqrt{y}+x\sqrt{z}-y\sqrt{z}+y\sqrt{x}-z\sqrt{x}+z\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)
\(=\frac{-\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)+\sqrt{z}\left(x-y\right)-z\left(\sqrt{x}-y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)
\(=\frac{-\sqrt{xy}+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)-z}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)
\(=\frac{-\sqrt{xy}+\sqrt{xz}+\sqrt{yz}-z}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)
\(=\frac{\sqrt{y}\left(\sqrt{z}-\sqrt{x}\right)-\sqrt{z}\left(\sqrt{z}-\sqrt{x}\right)}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)
\(=\frac{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{y}-\sqrt{z}\right)}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)