Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2n-2\right).2n}\)
\(< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2n-2}-\frac{1}{2n}\right)\)
\(< \frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n}\right)=\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)
\(\Rightarrow\) \(A< \frac{1}{4}\)
Study well ! >_<
a)x/7=-12/21
⇒ x/7=-4/7
⇒ x =-4
vậy x= -4
b)-9/16=-x/48
⇒-27/48=-x/48
⇒ -x =-27
⇒ x =27
2. Tìm x, y
x/7=-2/ Y
⇒ x. y=(-2).7
⇒ x.y=-14
Mà x, y thuộc Z
⇒ x, y là cặp ước của -14
⇒( x, y) €{(-1,14),(1,-14),(14,-1),(-14,1), (2,-7),(-2,7),(7,-2),(-7,2)}
1.
a. Vì \(\frac{x}{7}=\frac{-12}{21}\) nên \(x.21=7.\left(-12\right)\)
Suy ra : \(x=\frac{7.\left(-12\right)}{21}=\frac{-84}{21}=-4\)
Vậy \(x=-4\)
b. Vì \(\frac{-9}{16}=\frac{-x}{48}\) nên \(-9.48=16.\left(-x\right)\)
Suy ra : \(-x=\frac{\left(-9\right).48}{16}=\frac{-432}{16}=-27\)
Vậy \(-x=-27\Rightarrow x=27\)
2.
Vì \(\frac{x}{7}=\frac{-2}{y}\) nên \(x.y=7.\left(-2\right)\)\(\Rightarrow x.y=-14\)
Suy ra : \(x.y\in U\left(-14\right)=\left\{1;-1;2;-2;7;-7;14;-14\right\}\)
hoặc\(\Rightarrow x.y=1.\left(-14\right)\) hoặc \(x.y=\left(-1\right).14\)hoặc \(x.y=2.\left(-7\right)\)hoặc \(x.y=\left(-2\right).7\)
Vậy (x=1 và y= - 14 ) hoặc (x= -1 và y=14) hoặc (x=2 và y= -7) hoặc (x= -2 và y=7)
\(B=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}\)
\(\Rightarrow\frac{1}{5}B=\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\)
\(\Rightarrow\frac{1}{5}B=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\)
\(\Rightarrow\frac{1}{5}B=1-\frac{1}{31}\)
\(\Rightarrow\frac{1}{5}B=\frac{30}{31}\)
\(\Rightarrow B=\frac{30}{31}\div\frac{1}{5}\)
\(\Rightarrow B=\frac{150}{31}\)
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{9^2}\)
\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{9.9}\)
\(N\)bé hơn \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}=N_1\)
\(N_1=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\) \((1)\)
\(N\)lớn hơn \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}=N_2\)
\(\Rightarrow N_2=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{5}{10}-\frac{1}{10}=\frac{2}{5}\) \((2)\)
Từ \((1)\)và \((2)\)suy ra ; \(\frac{2}{5}\)bé hơn N bé hơn \(\frac{8}{9}\)
Học tốt
Nhớ kết bạn với mình
S có 30 số hạng . Nhóm thành 3 nhóm , mỗi nhóm 10 số hạng.
\(S=\left[\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right]+\left[\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right]+\left[\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right]\)
\(S< \left[\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right]+\left[\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right]+\left[\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right]\)
\(S< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}\)
\(S< \frac{37}{60}< \frac{48}{60}=\frac{4}{5}(1)\)
Lại có : \(S>\left[\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right]+\left[\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right]+\left[\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right]\)
\(S>\frac{10}{40}+\frac{10}{50}+\frac{10}{60}\)
\(S>\frac{37}{60}>\frac{36}{60}=\frac{3}{5}(2)\)
Từ 1 và 2 suy ra \(\frac{3}{5}< S< \frac{4}{5}\)
A = 1/2 + 1/3 + 1/4 + ... + 1/31
A = (1/2 + 1/3) + (1/4 + 1/5 + 1/6 + 1/7) + (1/8 + 1/9 + ... + 1/15) + (1/16 + 1/17 + ... + 1/31)
A < 1/2 × 2 + 1/4 × 4 + 1/8 × 8 + 1/16 × 16
A < 1 + 1 + 1 + 1
A < 4 ( đpcm)
Đặt \(S=\frac{1}{3}+\frac{2}{3^2}+.......+\frac{101}{3^{101}}\)
\(\Rightarrow3S=1+\frac{2}{3}+.......+\frac{101}{3^{100}}\)
\(\Rightarrow3S-S=\left(1+\frac{2}{3}+..+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+..+\frac{101}{3^{101}}\right)\)
\(\Rightarrow2S=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{100}}-\frac{101}{3^{101}}< 1+\frac{1}{3}+....+\frac{1}{3^{100}}\)
\(\Rightarrow6S< 3+1+........+\frac{1}{3^{99}}\)
\(\Rightarrow6S-2S< \left(3+1+....+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+....+\frac{1}{3^{100}}\right)\)
\(\Rightarrow4S< 3-\frac{1}{3^{100}}< 3\Rightarrow S< \frac{3}{4}\)
Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+...+\frac{101}{3^{101}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\)
\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\right)\)
\(4A=3-\frac{101}{3^{100}}-\frac{1}{3^{100}}+\frac{101}{3^{101}}\)
\(4A=3-\frac{303}{3^{101}}-\frac{3}{3^{101}}+\frac{100}{3^{101}}\)
\(4A=3-\frac{206}{3^{101}}< 3\)
=>\(4A< 3\)
\(\Rightarrow A< \frac{3}{4}\)
Đặt \(A=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{90}\)
\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\right)\)
Đặt \(B=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\)
Ta có: \(\frac{1}{31}>\frac{1}{45}\)
\(\frac{1}{32}>\frac{1}{45}\)
....................
\(\frac{1}{45}=\frac{1}{45}\)
\(\Rightarrow B>\frac{1}{45}.15\)
\(\Rightarrow B>\frac{1}{3}\)
Đặt \(C=\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\)
Ta có: \(\frac{1}{46}>\frac{1}{90}\)
\(\frac{1}{47}>\frac{1}{90}\)
.....................
\(\frac{1}{90}=\frac{1}{90}\)
\(\Rightarrow C>\frac{1}{90}.45\)
\(\Rightarrow C>\frac{1}{2}\)
\(\Rightarrow B+C>\frac{1}{3}+\frac{1}{2}\)
Hay \(A>\frac{5}{6}\left(1\right)\)
Lại có: \(A=\left(\frac{1}{31}+...+\frac{1}{59}\right)+\left(\frac{1}{60}+...+\frac{1}{90}\right)\)
Đặt \(D=\frac{1}{31}+...+\frac{1}{59}\)
Ta có: \(\frac{1}{31}< \frac{1}{30}\)
. ...................
\(\frac{1}{59}< \frac{1}{30}\)
\(\Rightarrow D< \frac{1}{30}.60\)
\(\Rightarrow D< \frac{1}{2}\)
Đăt \(E=\frac{1}{60}+...+\frac{1}{90}\)
Ta có: \(\frac{1}{60}=\frac{1}{60}\)
.................
\(\frac{1}{90}< \frac{1}{60}\)
\(\Rightarrow E< \frac{1}{60}.31\)
\(\Rightarrow E< \frac{31}{60}< 1\)
\(\Rightarrow E< 1\)
\(\Rightarrow E+D< 1+\frac{1}{2}\)
Hay \(A< \frac{3}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{5}{6}< A< \frac{3}{2}\)
Mình làm hơi ngáo có gì thì cứ nói