Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mọi số An = 11...122...225 ( có n số 1 và n+1 số 2) đều là số chính phương với mọi n.
Thật vây, 11..122..200 (n số 1; n số 2) = 11...10 X 10...020 (số 11..10 có n số 1 và số 10..020 có (n-1) số 0 giữa số 1 và 2)
= 11..10 X 3 X 33...340 ( số 33..340 có (n-1) số 3)
= 33...30 X (33..30+10) ( số 33..30 có n số 3)
= 33..30 X (33..30 +2 x5)
= 33..30^2+2x33..30x5.
Vậy số An = 33..30^2+2x33..30x5 +5^2 = (33...35)^2 n số 3 - Là 1 số chính phương với mọi n thuộc N.
Cũng đúng với n=2008 - ĐPCM.
EM tham khảo phần đầu ở link: Câu hỏi của Đinh Nguyến Nhật Minh - Toán lớp 8 - Học toán với OnlineMath
Trong 3 số a,b, c có hai số đối nhau g/s 2 số đó là a và b kho đó a=-b
=> \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-b\right)^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{c^{2019}}\)
và \(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-b\right)^{2019}+b^{2019}+c^{2019}}=\frac{1}{-b^{2019}+b^{2019}+c^{2019}}=\frac{1}{c^{2019}}\)
Do đó: \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)
Bài 1: Ta có: \(\sqrt{2020}-\sqrt{2019}=\frac{1}{\sqrt{2020}+\sqrt{2019}};\)\(\sqrt{2018}-\sqrt{2017}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)
Dễ thấy \(\sqrt{2020}+\sqrt{2019}>\sqrt{2018}+\sqrt{2017}\)nên \(\frac{1}{\sqrt{2020}+\sqrt{2019}}< \frac{1}{\sqrt{2018}+\sqrt{2017}}\)
Suy ra\(\sqrt{2020}-\sqrt{2019}< \sqrt{2018}-\sqrt{2017}\)
Bài 2: Xét biểu thức \(\sqrt{a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2}=\sqrt{a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2}=\sqrt{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1\)(Vì \(a^2+a+1>0\forall a\inℝ\))
Áp dụng công thức tổng quát trên, ta được: \(\sqrt{2019^2+2019^2.2020^2+2020^2}=2019^2+2019+1\)(là số tự nhiên) (đpcm)
\(22...2=\frac{2}{9}\left(99...9\right)=\frac{2}{9}\left(10^{2020}-1\right)\)
\(11...1=\frac{1}{9}\left(99...9\right)=\frac{1}{9}\left(10^{2019}-1\right)\)
Do đó:
\(A=\frac{1}{9}\left(10^{2019}-1\right).10^{2021}+\frac{2}{9}\left(10^{2020}-1\right).10+5\)
\(=\frac{1}{9}\left(10^{4040}-10^{2021}+2.10^{2021}-20+45\right)\)
\(=\frac{1}{9}\left(10^{4040}+10^{2021}+25\right)=\frac{1}{9}\left(2^{2020}+5\right)^2=\left(\frac{2^{2020}+5}{3}\right)^2\)
Mà \(2^{2020}=4^{1010}\equiv1\left(mod3\right)\Rightarrow2^{2020}+5⋮3\)
\(\Rightarrow\frac{2^{2020}+5}{3}\in Z\Rightarrow A\) là số chính phương
@Nguyễn Việt Lâm giúp em với