Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 3A= \(^{3^2+3^3+3^4+...+3^{100}}\)
3A-A=2A= (\(3^2+3^3+3^4+...+3^{100}\))-(\(3+3^2+3^3+...+3^{99}\))
2A= \(3^{100}-3\)
theo bài ra ta có
2A+3=\(3^n\)= \(3^{100}-3+3=3^n\)=\(^{3^{100}}\)\(\Rightarrow\)n=100
Bài 1 : Theo đề ta có :
5x . 5x+1 . 5x+2 \(\le\)100....000 ( 18 chữ số 0 ) : 218 ( x \(\in\)N )
=> 5x+x+1+x+2 \(\le\)1018 : 218
=> 53x+3 \(\le\)518
=> 3x + 3 \(\le\)18
=> 3x \(\le\)15
=> x \(\le\)5
Mà x \(\in\)N nên x \(\in\){ 0 ; 1 ; 2 ; 3 ; 4 ; 5 }
Vậy x \(\in\){ 0 ; 1 ; 2 ; 3 ; 4 ; 5 }
Bài 2 : Ta có :
S = 1 + 2 + 22 + 23 + ... + 22005
2S = 2 + 22 + 23 + 24 + ... + 22006 ( Nhân 2 các số hạng trong tổng )
S = 2S - S = ( 2 + 22 + 23 + 24 + ... + 22006 ) - ( 1 + 2 + 22 + 23 + .. + 22005 )
= 22006 - 1 ( Triệt tiệu các số hạng giống nhau )
=> S < 22006
Mặt khác 5 . 22004 > 4 . 22004 = 22 . 22004 = 22006
=> 5 . 22004 > 22006
Do đó S < 5. 22004
Vậy S < 5 . 22004
1a)
Có A=\(33^{44}=3^{44}\cdot11^{44}=\left(3^4\right)^{11}\cdot11^{44}\)
B= \(44^{33}=4^{33}\cdot11^{33}=\left(4^3\right)^{11}\cdot11^{33}\)
Vì \(3^4>4^3\)=> \(\left(3^4\right)^{11}>\left(4^3\right)^{11}\)
mà \(11^{44}>11^{33}\)
=> \(\left(3^4\right)^{11}+11^{44}>\left(4^3\right)^{11}+11^{33}\)
=>\(33^{44}>44^{33}\)
=> A > B
a/ Ta có :
\(\left\{{}\begin{matrix}\left|x-y-2\right|\ge0\\\left|y+2\right|\ge0\end{matrix}\right.\) \(\forall x;y\)
\(\Leftrightarrow\left|x-y-2\right|+\left|Y+2\right|\ge0\)
Mà \(\left|x-y-2\right|+\left|y-2\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-y-2\right|=0\\\left|y-2\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y-2=0\\y-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=2\\y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)
b/c tương tự
\(B=\dfrac{2005}{x^m}+\dfrac{2003}{x^n}=\dfrac{2004}{x^m}+\dfrac{1}{x^m}+\dfrac{2004}{x^n}-\dfrac{1}{x^n}=A+\left(\dfrac{1}{x^m}-\dfrac{1}{x^n}\right)\)
\(\Rightarrow A< B\)
mình ko bt đúng hay sai nữa