\(\left(x^3+y^3+z^3\right)\left(\frac{1}{x^3}+\frac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

áp dụng BĐT Cauchy đó bn

22 tháng 2 2018

\(Q=\left(x^3+y^3+z^3\right)\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)

Áp dụng BĐT Cauchy (AM-GM) có:

\(x^3+y^3+z^3\ge3\sqrt[3]{\left(xyz^3\right)}=3xyz\)

\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\ge\frac{3}{\sqrt[3]{\left(xyz^3\right)}}=\frac{3}{xyz}\)

\(\Leftrightarrow Q=\left(x^3+y^3+z^3\right)\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\ge3xyz\cdot\frac{3}{xyz}=9\)

Dấu ''='' xảy ra khi x=y=z

8 tháng 3 2017

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\hept{\begin{cases}x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\\\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\ge3\sqrt[3]{\frac{1}{x^3y^3z^3}}=\frac{3}{xyz}\end{cases}}\)

Nhân theo từng vế 

\(\Rightarrow Q\ge3xyz.\frac{3}{xyz}=9\)

Vậy  \(Q_{min}=9\)

19 tháng 3 2017

\(\frac{1}{6}\)nha bạn

30 tháng 3 2017

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\hept{\begin{cases}\frac{x^3}{\left(2x+y\right)\left(y+z\right)}+\frac{2x+y}{8}+\frac{y+z}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\\\frac{y^3}{\left(2y+z\right)\left(z+x\right)}+\frac{2y+z}{8}+\frac{x+z}{8}\ge3\sqrt[3]{\frac{y^3}{64}}=\frac{3y}{4}\\\frac{z^3}{\left(2z+x\right)\left(x+y\right)}+\frac{2z+x}{8}+\frac{x+y}{8}\ge3\sqrt[3]{\frac{z^3}{64}}=\frac{3z}{4}\end{cases}}\)

\(\Rightarrow\frac{x^3}{\left(2x+y\right)\left(y+z\right)}+\frac{y^3}{\left(2y+z\right)\left(x+z\right)}+\frac{z^3}{\left(2z+x\right)\left(x+y\right)}+\frac{5\left(x+y+z\right)}{8}\ge\frac{3\left(x+y+z\right)}{4}\)

\(\Rightarrow\frac{x^3}{\left(2x+y\right)\left(y+z\right)}+\frac{y^3}{\left(2y+z\right)\left(x+z\right)}+\frac{z^3}{\left(2z+x\right)\left(x+y\right)}+\frac{5}{8}\ge\frac{3}{4}\)

\(\Rightarrow\frac{x^3}{\left(2x+y\right)\left(y+z\right)}+\frac{y^3}{\left(2y+z\right)\left(x+z\right)}+\frac{z^3}{\left(2z+x\right)\left(x+y\right)}\ge\frac{1}{8}\)

\(\Leftrightarrow P_{min}=\frac{1}{8}\)

17 tháng 10 2020

qua hoidap247

17 tháng 10 2020

Ta có:

\(H=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)

\(=\frac{\frac{1}{x^2}}{x\left(y+z\right)}+\frac{\frac{1}{y^2}}{y\left(z+x\right)}+\frac{\frac{1}{z^2}}{z\left(x+y\right)}\)

\(=\frac{\left(\frac{1}{x}\right)^2}{xy+zx}+\frac{\left(\frac{1}{y}\right)^2}{yz+xy}+\frac{\left(\frac{1}{z}\right)^2}{zx+yz}\)

Áp dụng BĐT Bunyakovsky dạng cộng mẫu ta được:

\(H\ge\frac{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{2\left(xy+yz+zx\right)}=\frac{\left(\frac{xy+yz+zx}{xyz}\right)^2}{2\left(xy+yz+zx\right)}=\frac{\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}\)

\(=\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi: x = y = z = 1

Vậy Min(H) = 3/2 khi x = y = z = 1

6 tháng 12 2019

\(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)

\(=\frac{y^2z^2}{x\left(y+z\right)}+\frac{z^2x^2}{y\left(z+x\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)

\(\ge\frac{\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)

\(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{3}{4}\)

\(=\frac{x^3}{1+z+y+yz}+\frac{y^3}{1+x+z+xz}+\frac{z^3}{1+y+x+xy}\)

\(=\frac{x^3}{1+x+y+2y}\ge\frac{x}{2}\Rightarrow TổngBPT\ge\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\ge\frac{2}{3}\left(đpcm\right)\)

(Không chắc à nha)

3 tháng 2 2020

Ta có : \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)

\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}\ge\frac{6x-y-z-2}{8}\left(1\right)\)

Tương tự ta có : \(\hept{\begin{cases}\frac{y^3}{\left(1+z\right)\left(1+x\right)}\ge\frac{6y-z-x-2}{8}\left(2\right)\\\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{6z-x-y-2}{8}\left(3\right)\end{cases}}\)

Từ (1) , (2) và (3) 

\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)

\(\ge\frac{6x-y-z-2}{8}+\frac{6y-z-x-2}{8}+\frac{6z-x-y-2}{8}\)

\(=\frac{1}{2}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)

Chúc bạn học tốt !!!

8 tháng 11 2019

Ta có : \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)

\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}\ge\frac{6x-y-z-2}{8}\left(1\right)\)

Tương tự ta có : \(\hept{\begin{cases}\frac{y^3}{\left(1+z\right)\left(1+x\right)}\ge\frac{6y-z-x-2}{8}\left(2\right)\\\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{6z-x-y-2}{8}\left(3\right)\end{cases}}\)

Từ (1) , (2) , (3)

\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)

\(\ge\frac{6x-y-z-2}{8}+\frac{6y-z-x-2}{8}+\frac{6z-x-y-2}{8}\)

\(=\frac{1}{2}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)

Chúc bạn học tốt !!!

8 tháng 11 2019

Áp dụng bđt AM-GM ta có: 

\(\hept{\begin{cases}\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge3\sqrt[3]{\frac{x^3}{\left(1+y\right)\left(1+z\right)}.\frac{1+y}{8}.\frac{1+z}{8}}=\frac{3x}{4}\left(1\right)\\\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{1+z}{8}+\frac{1+x}{8}\ge3\sqrt[3]{\frac{y^3}{\left(1+z\right)\left(1+x\right)}.\frac{1+z}{8}.\frac{1+x}{8}}=\frac{3y}{4}\left(2\right)\\\frac{z^3}{\left(1+x\right)\left(1+y\right)}+\frac{1+x}{8}+\frac{1+y}{8}\ge3\sqrt[3]{\frac{z^3}{\left(1+x\right)\left(1+y\right)}.\frac{1+x}{8}.\frac{1+y}{8}}=\frac{3z}{4}\left(3\right)\end{cases}}\)

Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\)ta được: 

\(P+\frac{3+x+y+z}{4}\ge\frac{3\left(x+y+z\right)}{4}\)

\(\Leftrightarrow P\ge\frac{3\left(x+y+z\right)}{4}-\frac{3+x+y+z}{4}\)

\(\Leftrightarrow P\ge\frac{2\left(x+y+z\right)-3}{4}\left(1\right)\)

Áp dụng bdt AM-GM ta có:

\(x+y+z\ge3\sqrt[3]{xyz}=3\)Thay vào (1) ta được:

\(P\ge\frac{2.3-3}{4}\)

\(\Rightarrow P\ge\frac{3}{4}\)Dấu"="xảy ra \(\Leftrightarrow x=y=z\)