Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
2)
Đặt \(A=x^3-y^3-36xy\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-36xy\)
\(=\left(x-y\right)\left[\left(x-y\right)^2+3xy\right]\)
\(=12.12^2+3.12xy-36xy\)
\(=12^3\)
#)Giải :
1)
Ta có \(x+y=-5\Rightarrow\left(x+y\right)^2=x^2+y^2+2xy=\left(-5\right)^2=25\)
\(\Rightarrow2xy=25-11=14\)
\(\Rightarrow xy=7\)
\(\Rightarrow2xy.xy=2x^2.y^2=14.7=98\)
\(\left(x^2+y^2\right)^2=11^2=121\)
\(\Rightarrow\left(x^4+y^4\right)+98=121\)
\(\Rightarrow x^4+y^4=23\)
a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)
\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=10^2-2.\left(-3\right)^2=82\)
b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)
\(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=1.\left(1-2xy-xy\right)+3xy=1\)
Các câu còn lại tương tự
Bài 1:
Theo bài ra ta có:
\(\left(x-y\right)^2=x^2-2xy+y^2\)
\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)
\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)
\(=25-10y+y^2+25-10x+x^2-4\)
\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)
\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)
\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)
\(=50-50+5^2-4-4\)
\(=25-8=17\)
Vậy giá trị của \(\left(x-y\right)^2\)là 17
a) Từ \(x-y=7=>\left(x-y\right)^2=7^2=>x^2-2xy+y^2=49\)
\(=>x^2+y^2=49+2xy=49+2.60=169\)
\(=>x^2+y^2+2xy=169+2xy=>\left(x+y\right)^2=169+2.60=289=17^2=\left(-17\right)^2\)
\(=>x+y=17\) hoặc \(x+y=-17\)
Mà theo đề: x>y>0 nên x+y > 0,vậy loại x+y=-17
=>x+y=17
Do đó \(x^2-y^2=\left(x-y\right).\left(x+y\right)=7.17=119\)
Vậy........
b) Ta có: \(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2-y^2\right)^2+2x^2y^2\) (theo hđt mở rộng:\(a^2+b^2=\left(a-b\right)^2+2ab\) )
\(=119^2+2.\left(xy\right)^2=119^2+2.60^2=21361\)
Vậy......
Bổ sung thêm
b)Ta có (x2 - y2)2 = x4 -2x2y2 +y4
hay 602 = x4 +y4 - 2(xy) 2
nên 3600 = x4 +y4 - 2*36
Vậy x4 +y4 = 3600 -72=3528