Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = (n^4-3n^3)+(2n^3-6n^2)+(7n-21) = (n-3).(n^3+2n^2+7)
Để B là số nguyên tố => n-3 = 1 hoặc n^3+2n^2+7 = 1
=> n=4 hoặc n^3+2n^2+6=0
=> n=4 ( vì n^3+2n^2+6 > 0 )
Khi đó : B = 4^4-4^3-6.4^2+7.4-21 = 103 là số nguyên tố (tm)
Vậy n = 4
k mk nha
\(B=\left(n^4-3n^3\right)+\left(2n^3-6n^2\right)+\left(7n-21\right)\)
\(=n^3\left(n-3\right)+2n^2\left(n-3\right)+7\left(n-3\right)\)
\(=\left(n^3+2n^2+7\right)\left(n-3\right)\)
Dễ thấy \(n^3+2n^2+7>n-3\), mà số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó.
\(\Rightarrow n-3=1\)
\(\Rightarrow n=4\)
Thử lại : \(B=103\left(TM\right)\)
\(\left(n^2-8\right)^2+36\)
\(=n^4-16n^2+64+36\)
\(=\left(n^4+20n^2+100\right)-36n^2\)
\(=\left(n^2+10\right)^2-\left(6n\right)^2\)
\(=\left(n^2+10-6n\right)\left(n^2+10+6n\right)\)
Để n là số nguyên tố thì \(\orbr{\begin{cases}n^2+10-6n=1\\n^2+10+6n=1\end{cases}}\)
Mà do \(n\in N\Rightarrow n^2+10-6n=1\)
\(\Leftrightarrow n^2-6n+9=0\)
\(\Leftrightarrow\left(n-3\right)^2=0\)
\(\Leftrightarrow n-3=0\)
\(\Leftrightarrow n=3\)
Vậy n=3.