K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1) 

a) Nếu AB = AC 

=> ∆ABC cân tại A 

=> ABC = ACB 

Mà AM = AN 

=> MB = NC 

Xét ∆MCB và ∆NBC ta có : 

MB = MC(cmt)

ABC = ACB (cmt)

BC chung 

=> ∆MCB = ∆NBC (cgc)

=> MC = NB (dpcm)

18 tháng 7 2019

1>  B C A M N

( Thông cảm tỉ lệ :P)

+ Nếu AB = AC :

Xét \(\Delta ABN\)và \(\Delta ACM\)có : \(\hept{\begin{cases}AN=AM\left(gt\right)\\\widehat{A}chung\\AB=AC\end{cases}}\)

=> \(\Delta ABN\)\(\Delta ACM\)(c-g-c)

=> BN = CM ( hai cạnh tương ứng)

b)  B C A M N D

+ Nếu AB > AC :

Trên cạnh AB lấy D sao cho AD = AC => AD < AB

=> D nằm giữa B và M 

+ Cmtt câu a ta có : \(\Delta ADN=\Delta ACM\)

=> DN = CM ( 2 cạnh tương ứng) (1)

+ Vì N nằm giữa A và C => Tia DN nằm giữa 2 tia DA và DC

=> \(\widehat{ADN}< \widehat{ADC}\)

+ Vì AD = AC => tg ADC cân tại A => \(\widehat{ADC}< 90^o\)

=> Góc ADN < 90o mà \(\widehat{ADN}+\widehat{NDB}=180^o\)( 2 góc kề bù)

=> \(\widehat{NDB}>90^o\)

Xét tg NBD có \(\widehat{NDB}>90^o\)=> Cạnh BN lớn nhất => BN > DN (2)

Từ (1) và (2) => BN > CM

4 tháng 4 2018

Hình vẽ:

4 tháng 4 2018

1. Nếu AB = AC:

Xét tam giác ABN và tam giác ACM có:

AN = AM (gt)

AB = AC (gt)

Góc A chung

\(\Rightarrow\Delta ABN=\Delta ACM\left(c-g-c\right)\)

\(\Rightarrow BN=CM\)  (Hai cạnh tương ứng)

2. 

a) Trên cạnh AB lấy điểm M' sao cho AM' = AC.

Ta có ngay \(\Delta AM'N=\Delta ACM\left(c-g-c\right)\)

\(\Rightarrow MC=NM'\)

Lại có AM' < AB nên NM' < NB

Vậy nên BN > CM

b) Ta thấy ngay MK > KN mà BN > MC nên BK = BN - KN > KC = MC - MK

20 tháng 2 2018

AM = CN (gt) 
AC = BC ( cạnh tam giác đều) 
CAM^ = BCN^ = 60* 
=> Δ ACM = Δ CBN (c.g.c) 
=> CM = BN 

b) Chứng minh góc BOC không đổi khi M và N di động trên hai cạnh AB và AC thỏa mãn AM=CN 
Δ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^ 
=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60* 
=> BOC^ = 180* - (CBN^ + BCM^) = 180* - 60* = 120* không đổi

10 tháng 7 2018

Kẻ tia NM cắt BC tại H

có AM=AN và góc BAC=90 => tam giác AMN vuông cân tại A

=> góc HNA=45

do tam giác ABC vuông cân => góc ACB=45

tam giác HNC có góc HNA+ACB=90

=> tam giác HNC vuông tại H

=> NH vuông góc BC

do tam giác ABC vuông tại A => BA vuông góc NC

mà NH và AB cắt nhau tại M

xét tam giác BNC có NH và BA là hai đường cao cắt nhau tại M

=> M là trực tâm tam giác BNC

=> CM vuông góc BN

25 tháng 3 2018

Bài 2 : 

1. Ta có : AB=AC <=> AM+MB=AN+NC 

Mà AM=AN nên MB=MC

2. Kẻ BI vuông góc với MN và CE vuông góc với MN ( I và E thuộc đoạn MN kéo dài )

Xét hai tam giác vuông MBI và NCE có : 

BM>CN ( do AB>AC )

=> IB>CE và IM>EN  => IM+MN>EN+MN <=> NI>ME

Xét hai tam giác vuông IBN và ECM có : NI>ME và IB>CE => BN>CM 

( vì hai cạnh góc vuông lớn hơn nên cạnh huyền cũng lớn hơn )

25 tháng 3 2018

Sai đề bài 1 : 

Chỗ kia là dấu " = " chứ 

M N A B C I

a) Vì AC=AB => ∆ABC cân=> B=C

Xét ∆BNC và ∆CMB ta có:

BM=CN

B=C

BC cạnh chung

=>∆BNC = ∆CMB(c-g-c)

=> BN=CM

b) Vì I là trung điểm của BC => BI=CI

Xét  ∆ABI và ∆ACI ta có:

BI=CI

B=C

AC=AB

=> ∆ABI = ∆ACI (c-g-c)

c) Vì  ∆ABI = ∆ACI (chứng minh trên)=> A1=A2=> AI là trung điểm của góc A

HT

a) Vì AC=AB => ∆ABC cân=> B=C

Xét ∆BNC và ∆CMB ta có:

BM=CN

B=C

BC cạnh chung

=>∆BNC = ∆CMB(c-g-c)

=> BN=CM

b) Vì I là trung điểm của BC => BI=CI

Xét  ∆ABI và ∆ACI ta có:

BI=CI

B=C

AC=AB

=> ∆ABI = ∆ACI (c-g-c)

c) Vì  ∆ABI = ∆ACI (chứng minh trên)=> A1=A2=> AI là trung điểm của góc A

HT