Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Nếu AB = AC:
Xét tam giác ABN và tam giác ACM có:
AN = AM (gt)
AB = AC (gt)
Góc A chung
\(\Rightarrow\Delta ABN=\Delta ACM\left(c-g-c\right)\)
\(\Rightarrow BN=CM\) (Hai cạnh tương ứng)
2.
a) Trên cạnh AB lấy điểm M' sao cho AM' = AC.
Ta có ngay \(\Delta AM'N=\Delta ACM\left(c-g-c\right)\)
\(\Rightarrow MC=NM'\)
Lại có AM' < AB nên NM' < NB
Vậy nên BN > CM
b) Ta thấy ngay MK > KN mà BN > MC nên BK = BN - KN > KC = MC - MK
AM = CN (gt)
AC = BC ( cạnh tam giác đều)
CAM^ = BCN^ = 60*
=> Δ ACM = Δ CBN (c.g.c)
=> CM = BN
b) Chứng minh góc BOC không đổi khi M và N di động trên hai cạnh AB và AC thỏa mãn AM=CN
Δ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^
=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60*
=> BOC^ = 180* - (CBN^ + BCM^) = 180* - 60* = 120* không đổi
Kẻ tia NM cắt BC tại H
có AM=AN và góc BAC=90 => tam giác AMN vuông cân tại A
=> góc HNA=45
do tam giác ABC vuông cân => góc ACB=45
tam giác HNC có góc HNA+ACB=90
=> tam giác HNC vuông tại H
=> NH vuông góc BC
do tam giác ABC vuông tại A => BA vuông góc NC
mà NH và AB cắt nhau tại M
xét tam giác BNC có NH và BA là hai đường cao cắt nhau tại M
=> M là trực tâm tam giác BNC
=> CM vuông góc BN
Bài 2 :
1. Ta có : AB=AC <=> AM+MB=AN+NC
Mà AM=AN nên MB=MC
2. Kẻ BI vuông góc với MN và CE vuông góc với MN ( I và E thuộc đoạn MN kéo dài )
Xét hai tam giác vuông MBI và NCE có :
BM>CN ( do AB>AC )
=> IB>CE và IM>EN => IM+MN>EN+MN <=> NI>ME
Xét hai tam giác vuông IBN và ECM có : NI>ME và IB>CE => BN>CM
( vì hai cạnh góc vuông lớn hơn nên cạnh huyền cũng lớn hơn )
M N A B C I
a) Vì AC=AB => ∆ABC cân=> B=C
Xét ∆BNC và ∆CMB ta có:
BM=CN
B=C
BC cạnh chung
=>∆BNC = ∆CMB(c-g-c)
=> BN=CM
b) Vì I là trung điểm của BC => BI=CI
Xét ∆ABI và ∆ACI ta có:
BI=CI
B=C
AC=AB
=> ∆ABI = ∆ACI (c-g-c)
c) Vì ∆ABI = ∆ACI (chứng minh trên)=> A1=A2=> AI là trung điểm của góc A
HT
a) Vì AC=AB => ∆ABC cân=> B=C
Xét ∆BNC và ∆CMB ta có:
BM=CN
B=C
BC cạnh chung
=>∆BNC = ∆CMB(c-g-c)
=> BN=CM
b) Vì I là trung điểm của BC => BI=CI
Xét ∆ABI và ∆ACI ta có:
BI=CI
B=C
AC=AB
=> ∆ABI = ∆ACI (c-g-c)
c) Vì ∆ABI = ∆ACI (chứng minh trên)=> A1=A2=> AI là trung điểm của góc A
HT
Bài 1)
a) Nếu AB = AC
=> ∆ABC cân tại A
=> ABC = ACB
Mà AM = AN
=> MB = NC
Xét ∆MCB và ∆NBC ta có :
MB = MC(cmt)
ABC = ACB (cmt)
BC chung
=> ∆MCB = ∆NBC (cgc)
=> MC = NB (dpcm)
1> B C A M N
( Thông cảm tỉ lệ :P)
+ Nếu AB = AC :
Xét \(\Delta ABN\)và \(\Delta ACM\)có : \(\hept{\begin{cases}AN=AM\left(gt\right)\\\widehat{A}chung\\AB=AC\end{cases}}\)
=> \(\Delta ABN\)= \(\Delta ACM\)(c-g-c)
=> BN = CM ( hai cạnh tương ứng)
b) B C A M N D
+ Nếu AB > AC :
Trên cạnh AB lấy D sao cho AD = AC => AD < AB
=> D nằm giữa B và M
+ Cmtt câu a ta có : \(\Delta ADN=\Delta ACM\)
=> DN = CM ( 2 cạnh tương ứng) (1)
+ Vì N nằm giữa A và C => Tia DN nằm giữa 2 tia DA và DC
=> \(\widehat{ADN}< \widehat{ADC}\)
+ Vì AD = AC => tg ADC cân tại A => \(\widehat{ADC}< 90^o\)
=> Góc ADN < 90o mà \(\widehat{ADN}+\widehat{NDB}=180^o\)( 2 góc kề bù)
=> \(\widehat{NDB}>90^o\)
Xét tg NBD có \(\widehat{NDB}>90^o\)=> Cạnh BN lớn nhất => BN > DN (2)
Từ (1) và (2) => BN > CM