Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O E F
a) Ta có BD = BA \(\Rightarrow\)tam giác ABD cân tại B
Gọi giao điểm của AD với BE là O
Xét tam giác ABO và tam giác DBO có :
AB = BD
\(\widehat{ABO}=\widehat{DBO}\)( BE là phân giác góc B )
Chung cạnh BO
\(\Rightarrow\) tam giác ABO = tam giác DBO ( c-g-c )
\(\Rightarrow\widehat{AOB}=\widehat{DOB}\)
Mà \(\widehat{AOB}+\widehat{BOD}=180^o\)( kề bù )
\(\Rightarrow AD\perp BE\)
b) Xét tam giác BAE và tam giác BDE có :
AB = BD
\(\widehat{ABE}=\widehat{DBE}\)
Chung BE
\(\Rightarrow\) tam giác BAE = tam giác BDE ( c-g-c )
\(\Rightarrow EA=ED\)
c) ta có tam giác AEB = tam giác DEB ( câu b )
\(\Rightarrow\widehat{EAB}=\widehat{EDB}=90^o\)
Mà \(\widehat{EDB}+\widehat{EDC}=180^o\)
\(\Rightarrow\widehat{EDC}=\widehat{EDB}=90^o\)
Xét tam giác AFE và tam giác DCE có :
\(\widehat{EAF}=\widehat{EDC}\left(=90^o\right)\)
AF = DC
AE = ED ( câu b )
\(\Rightarrow\)tam giác AFE = tam giác DCE ( c - g - c )
\(\Rightarrow EF=EC\)
d) Ta có AB = BD
AF = DC
\(\Rightarrow AB+AF=BD+DC\)
\(\Leftrightarrow BF=BC\)
\(\Rightarrow\)Tam giác BFC cân tại B
Mà BE là phân giác góc FBC ( là đỉnh tam giác cân FBC )
\(\Rightarrow\)BE là đường cao tam giác FBC
Lại có \(CA\perp BF\)
CA và BE cắt nhau tại E
\(\Rightarrow\)E là trực tâm tam giác FBC
Mà \(\widehat{EDC}=\widehat{EDB}=90^o\Rightarrow ED\perp BC\)
\(\Rightarrow\)D ; E ; F thẳng hàng
a) ta có: A + ABC + C =180° (đ/l)
=> 90° + ABC + 40° =180°
=> ABC = 180° -( 40°+ 90°)
=> ABC = 50°
Vì BD là tia phân giác góc ABC => ABD = CBD = 50° : 2 = 25°
Vậy ABD = 25°
b) xét tam giác BAD và tam giác BED có:
AB = BE ( GT )
BD chung
ABD = CBD ( GT )
=> tam giác BAD = tam giác BED ( c.g.c )
Ta có A = BED = 90° ( 2 góc t.ư)
=> DE vuông góc BC ( vì có 1 góc= 90° )
c) xét tam giác ABC và tam giác EBF có:
AB = BE ( GT )
B chung
A = E = 90°
=> tam giác ABC = tam giác EBF ( g.c.g )
d) ta có tam giác ABC = tam giác EBF ( theo c )
=> BC = BF ( 2 cạnh tương ứng)
Xét tam giác BKC và tam giác BKF có:
BC = BF ( GT )
BK chung
FBK = KBC ( GT )
=> tam giác BKC = tam giác BKF (c.g.c)
=> BKC = BKF ( 2 góc t.ư)
=> BKC + BKF = 180° ( 2 góc kề bù )
=> BKC = BKF = 180° : 2 = 90° = KFC
Vậy 3 điểm K,F,C thẳng hàng
Bn vẽ hình hộ mk nhé!
A B C D 40
a) Áp dụng tc tổng 3 góc của 1 tg ta có:
góc BAC + ACB + ABC = 180 độ
=>90 + 40 + ABC = 180
=> ABC = 50 độ
mà góc ABD = CBD = ABC : 2 = 50 : 2 = 25 độ ( BD là tia pg của ABC )
a. Ta có: tg BEC cân tại B( do BE=BC) có góc EBC=60độ => Tg BEC đều
b. BI là phân giác góc ABC => góc ABI = góc IBC = 30độ (=góc ACB)
=> tg BIC cân tại I => IB=IC
Lại có: tg ABC vuông tại A có góc ACB=30độ => AB=1/2 BC => AB=1/2 BE => AB=AE
=> tg BAI = tg EAI (c-g-c) => BI=EI
=> EI=IC
c, tg BAI = tg EAI (c-g-c) => góc AEI = góc ABI = 30độ
=> góc AEI + góc ABC = 30 độ + 60độ = 90độ => EI vuông góc BC
d. Ta có IB=IC => IA + IB = IA+IC =AC <BC (cạnh gv <cạnh huyền)
Bài 1:
a) Vì BE = BC nên \(\Delta BEC\) cân tại B (1)
mà \(\widehat{B}=60^o\) (2)
Từ (1) và (2) suy ra \(\Delta BEC\) đều.
b) Xét \(\Delta IEB\) và \(\Delta ICB\) có:
BE = BC (gt)
\(\widehat{EBI}=\widehat{CBI}\) (suy từ gt)
IB cạnh chung
\(\Rightarrow\Delta IEB=\Delta ICB\left(c.g.c\right)\)
\(\Rightarrow IE=IC\) (2 cạnh t/ư)
c) Gọi giao điểm của IE và BC là D.
Do \(\Delta IEB=\Delta ICB\) (câu b)
\(\Rightarrow\widehat{BIE}=\widehat{BIC}\) (2 góc t/ư)
Ta có: \(\widehat{BIA}+\widehat{AIE}=\widehat{BIE}\)
\(\widehat{BID}+\widehat{DIC}=\widehat{BIC}\)
mà \(\widehat{AIE}=\widehat{DIC}\) (đối đỉnh); \(\widehat{BIE}=\widehat{BIC}\) (c/m trên)
\(\Rightarrow\widehat{BIA}=\widehat{BID}\)
Xét \(\Delta BAI\) và \(\Delta BDI\) có:
\(\widehat{ABI}=\widehat{DBI}\) (tia pg)
AI cạnh chug
\(\widehat{BIA}=\widehat{BID}\) (c/m trên)
\(\Rightarrow\Delta BAI=\Delta BDI\) (g.c.g)
\(\Rightarrow\widehat{BAI}=\widehat{BDI}=90^o\) (2 góc t/ư)
Do đó \(ID\perp BC\) hay \(IE\perp BC\)
mình cảm ơn nhiều