K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
21 tháng 7 2023
1: AB/AC=5/7
=>HB/HC=(AB/AC)^2=25/49
=>HB/25=HC/49=k
=>HB=25k; HC=49k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>1225k^2=15^2=225
=>k^2=9/49
=>k=3/7
=>HB=75/7cm; HC=21(cm)
PQ
0
13 tháng 7 2017
theo hệ thức lượng trong tam giác vuông ta có :
\(AC^2=HC.BC\)
\(AB^2=HB.BC\) chia các vế vs nhau ta được : \(\frac{AC^2}{AB^2}=\frac{HC}{HB}\)=> \(\frac{HC}{HB}=\left(\sqrt{2}\right)^2=2\)
Ta có : HC = HB + 2 =>\(\frac{HB+2}{HB}=2\)=> HB = 2
=> HC = 2 + 2 = 4 => BC = HB + HC = 2 + 4 = 6
\(AB^2=2.6=12\)=> AB = \(\sqrt{12}=2\sqrt{3}\)
\(\frac{AC}{AB}=\sqrt{2}\)=> \(\frac{AC}{2\sqrt{3}}=\sqrt{2}\)=> AC = \(2\sqrt{6}\)
Bài 2:
HC=2HB nên BC=3HB
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
\(\Leftrightarrow3HB^2=64\)
\(\Leftrightarrow HB=\dfrac{8\sqrt{3}}{3}\left(cm\right)\)
\(\Leftrightarrow HC=\dfrac{16\sqrt{3}}{3}\left(cm\right)\)
\(\Leftrightarrow AH=\sqrt{8\cdot16\cdot\dfrac{3}{9}}=\dfrac{8\sqrt{6}}{3}\left(cm\right)\)
\(AC=\sqrt{\left(\dfrac{16\sqrt{3}}{3}\right)^2+\left(\dfrac{8\sqrt{6}}{3}\right)^2}=8\sqrt{2}\left(cm\right)\)