K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

ĐỀ BÀI THIẾU \(\widehat{BAC}=105^0\). Hình vẽ trong TKHĐ

Qua A kẻ đường thẳng vuông góc với AC cắt BC tại M. Tại E kẻ đường thẳng song song với AH cắt AC tại D.

Xét tam giác ABE có AB=BE=1 mà ^ABE=600 nên tam giác ABE đều. Khi đó 

\(AH=AB\cdot\sin\widehat{ABH}=\sin60^0=\frac{\sqrt{3}}{2}\)

Dễ thấy \(\Delta MAE=\Delta ADE\left(g.c.g\right)\Rightarrow AD=AM\Rightarrow\Delta\)AMC vuông tại A có đường cao AH theo hệ thức lượng:

\(\frac{1}{AC^2}+\frac{1}{AM^2}=\frac{1}{AH^2}\Rightarrow\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{4}{3}\)

26 tháng 8 2020

Gọi F đối xứng với C qua A. Khi đó tam giác FBC vuông tại F.

Theo hệ thức lượng thì \(BC^2=HC\cdot CF\). Mặt khác \(BC^2=2AB\cdot HC\)

Đến đây dễ rồi nha, làm tiếp thì chán quá :(

29 tháng 7 2016

Câu 2a. Theo đầu bài ta có hình:
A B C M N P D E F
Nhìn hình ta thấy: SMNP = SABC - ( SMBN + SAMP + SPNC )

1) Do BN = 1/4 BC  =>  SABN = 1/4 SABC
Do AM + MB = AB mà AM = 1/4 AB  =>  MB = 3/4 AB  =>  SMBN = 3/4 SABN
=> SMBN = 3/4 * 1/4 = 3/16 SABC

2) Do AM = 1/4 AB  =>  SAMC = 1/4 SABC
Do CP + PA = CA mà CP = 1/4 CA  =>  PA = 3/4 CA  =>  SAMP = 3/4 SAMC
=> SAMP = 3/4 * 1/4 = 3/16 SABC

3) Do CP = 1/4 CA  =>  SPBC = 1/4 SABC
Do BN + NC = BC mà BN = 1/4 BC  =>  NC = 3/4 BC  =>  SPNC = 3/4 SPBC
=> SPNC = 3/4 * 1/4 = 3/16 SABC

Từ 1), 2), 3) và phép tính trên suy ra SMNP = SABC - ( 3/16 SABC + 3/16 SABC + 3/16 SABC ) = 7/16 SABC

29 tháng 7 2016

bạn có thể giúp mình tất cả các bài còn lại đc ko

30 tháng 4 2020

a) Gọi H là giao của PN và BC, I là giao của MP và BC

Ta có \(\frac{AN}{AC}+\frac{NC}{AC}=1\left(1\right)\)

Mặt khác áp dụng định lý Talet ta có:

\(\frac{NC}{AC}=\frac{CH}{BC}=\frac{CI+CH}{BC}=\frac{CI}{BC}+\frac{CH}{BC}\left(2\right)\)

Vì MI//AC nên \(\frac{CI}{BC}=\frac{AM}{AB}\left(3\right)\)

Vì \(\Delta\)ABC đồng dạng với \(\Delta\)PHI (gg)

=> \(\frac{IH}{BC}=\frac{PH}{AB}\)mà \(\frac{PH}{AB}=\frac{PQ}{AQ}\left(4\right)\)

Từ (1)(2)(3)(4) => \(\frac{AN}{AC}+\frac{NC}{AC}=....=\frac{AM}{AB}+\frac{AN}{AC}+\frac{PQ}{AQ}=1\left(đpcm\right)\)

b) Từ câu (a) ta có:

\(\frac{AM\cdot AN\cdot PQ}{AB\cdot AC\cdot AQ}=\frac{CI\cdot AN\cdot IH}{BC\cdot AC\cdot BC}=\frac{CI\cdot BH\cdot IH}{BC\cdot BC\cdot BC}=\frac{1}{27}\)

=> \(CI\cdot BH\cdot IH=\frac{BC^3}{27}\)

Mặt khác áp dụng BĐT Cosi cho 3 số không âm ta có:

\(CI\cdot BH\cdot IH\le\frac{\left(CI+IH+HB\right)^3}{3^3}=\frac{1}{27}\)

30 tháng 4 2020

A B C H Q I P M N

Gọi H = PN ∩ BC; I = MP ∩ BC

a, Ta có: \(\frac{AN}{AC}+\frac{NC}{AC}=1\left(1\right)\)

Mặt khác, áp dụng định lý Ta-lét, ta có:

\(\frac{NC}{AC}=\frac{CH}{BC}=\frac{CI+HI}{BC}=\frac{CI}{BC}+\frac{HI}{BC}\left(2\right)\)

Vì MI//AC nên \(\frac{CI}{BC}=\frac{AM}{AB}\left(3\right)\)

Vì ΔABC đồng dạng với ΔPHI (g.g)

=> \(\frac{HI}{BC}=\frac{PH}{AB}\) mà \(\frac{PH}{AB}=\frac{PQ}{AB}\)

nên \(\frac{HI}{BC}=\frac{PQ}{AB}\left(4\right)\)

Từ (1), (2), (3), (4) suy ra: 

\(\frac{AN}{AC}+\frac{NC}{AC}=\frac{AN}{AC}+\frac{CI}{BC}+\frac{HI}{BC}\)

\(=\frac{AN}{AC}+\frac{AM}{AB}+\frac{PQ}{AQ}=1\left(đpcm\right)\)

b, Từ câu a ta có:  

\(\frac{AM.AN.PQ}{AB.AC.AQ}=\frac{CI.AN.IH}{BC.AC.BC}=\frac{CI.BH.IH}{BC.BC.BC}=\frac{1}{27}\)

\(\Leftrightarrow CI.BH.IH=\frac{1}{27}.BC^3\)

Áp dụng BĐT Cô-si cho 3 số không âm, ta có:

\(CI.BH.IH\le\frac{\left(CI+BH+IH\right)^3}{3^3}=\frac{1}{27}.BC^3\)

Dấu "=" xảy ra <=> CI = BH = IH

<=> Q là trung điểm của BC và AP\(=\frac{2}{3}AQ\)

15 tháng 4 2019

trl

câu b bài này hình như mik làm rồi

để mik làm xem

15 tháng 4 2019

bạn giúp mik làm câu b nhé thanks