\(\frac{AB}{2}\). T...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2020

A B C D E F

  GT  

 △ABC: AB < AC. BAD = DAC = BAC/2 (D \in BC)

 E \in AC : AE = AB

 F \in AB : AF = AC

 KL

 a, △ABD = △AED

 b, AD ⊥ FC

 c, △BDF = △EDC ; BF = EC

 d, F, D, E thẳng hàng

Bài làm:

a, Xét △ABD và △AED

Có: AB = AE (gt)

    BAD = DAE (gt) 

 AD là cạnh chung

=> △ABD = △AED (c.g.c)

b, Vì △ABD = △AED (cmt)

=> BD = ED (2 cạnh tương ứng)

=> D thuộc đường trung trực của BE   (1)

Vì AB = AE (gt) => A thuộc đường trung trực của BE   (2)

Từ (1) và (2) => AD là đường trung trực của BE

=> AD ⊥ FC

c, Vì △ABD = △AED (cmt)

=> ABD = AED (2 góc tương ứng)

Ta có: ABD + DBF = 180o (2 góc kề bù)

AED + DEC = 180o (2 góc kề bù)

Mà ABD = AED (cmt)

=> DBF = DEC

Lại có: AB + BF = AF

AE + EC = AC

Mà AB = AE (gt) ; AF = AC (gt)

=> BF = EC

Xét △BDF và △EDC

Có: BD = ED (cmt)

    DBF = DEC (cmt)

      BF = EC (cmt)

=> △BDF = △EDC (c.g.c)

d, Vì △BDF = △EDC (cmt)

=> BDF = EDC (2 góc tương ứng)

Ta có: BDE + EDC = 180o (2 góc kề bù)

=> BDE + BDF = 180o

=> FDE = 180o

=> 3 điểm F, D, E thẳng hàng

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

3 tháng 12 2018

A C B E D Xét tam giác vuông ABC và tam giác vuông ADE có :

AB=AD

AC=AE

=> tam giác ABC= tam giác ADE ( 2 cạnh góc vuông )