K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

A B C M E D H K

Gọi H là trung điểm của BD. K là trung điểm của CE.

M là trung điểm của BC, H là trung điểm của BD => HM // CD (T/c đường trung bình)

Xét tam giác AHM: D là trung điểm của AH, HM // DO => O là trung điểm của AM

=> BE đi qua trung điểm của AM (1)

Tương tự: MK // BE; E là trung điểm của K => O là trung điểm của AM   

=> CD đi qua trung điểm của AM (2)

Từ (1) và (2) => AM,BE,CD đồng quy (đpcm)

18 tháng 3 2020

 Gọi Q là trung điểm của DC ; P là trung điểm của BE 

+)Gọi O là giao điểm của AM và CE 

Ta có : M là trung điểm của BC ; P là trung điểm của BE 

\(\implies\) MP là đường trung bình của tam giác BEC

\(\implies\) MP song song với EC 

\(\implies\) MP song song với EO

Mà E là trung điểm của AP 

\(\implies\) EO là đường trung bình của tam giác APM

\(\implies\) O là trung điểm của AM ( 1 )

+)Gọi O, là giao điểm của AM và BD

Ta có : M là trung điểm của BC ; Q là trung điểm của DC 

\(\implies\) MQ là đường trung bình của tam giác BDC

\(\implies\) MQ song song với BD

\(\implies\) MQ song song với O,D

Mà D là trung điểm của AQ

\(\implies\) O,D là đường trung bình của tam giác APQ

\(\implies\) O, là trung điểm của AM ( 2 )

Từ ( 1 ) ; ( 2 )

\(\implies\) O \(\equiv\)  O,

\(\implies\) 3 đường thẳng AM ; CE ; BD đồng quy tại 1 điểm 

\(\implies\) đpcm

18 tháng 3 2020

 Gọi Q là trung điểm của DC ; P là trung điểm của BE 

+)Gọi O là giao điểm của AM và CE 

Ta có : M là trung điểm của BC ; P là trung điểm của BE 

\(\implies\) MP là đường trung bình của tam giác BEC

\(\implies\) MP song song với EC 

\(\implies\) MP song song với EO

Mà E là trung điểm của AP 

\(\implies\) EO là đường trung bình của tam giác APM

\(\implies\) O là trung điểm của AM ( 1 )

+)Gọi O, là giao điểm của AM và BD

Ta có : M là trung điểm của BC ; Q là trung điểm của DC 

\(\implies\) MQ là đường trung bình của tam giác BDC

\(\implies\) MQ song song với BD

\(\implies\) MQ song song với O,D

Mà D là trung điểm của AQ

\(\implies\) O,D là đường trung bình của tam giác APQ

\(\implies\) O, là trung điểm của AM ( 2 )

Từ ( 1 ) ; ( 2 )

\(\implies\) O \(\equiv\)  O,

\(\implies\) 3 đường thẳng AM ; CE ; BD đồng quy tại 1 điểm 

\(\implies\) đpcm

27 tháng 7 2017

Gọi K là trung điểm DC ; G là giao điểm AM và BD

tam giác BCD có MK là đtbinh => MK // BD

Tam giác AMK có : D là trung điểm AK và GD// MK

=> G là trung điểm AM => BD đi qua trung điểm AM

CMTT : CE cũng đi qua trung điểm AM

=> đpcm

30 tháng 12 2017

A B C D E O H M F P Q 1 1 K 1 1

1) Ta có: ^BAC+^BAD=^BAC+^CAE=^BAC=900 => ^DAC=^BAE

Xét \(\Delta\)DAC & \(\Delta\)BAE: AD=AB; ^DAC=^BAE; AC=AE => \(\Delta\)DAC=\(\Delta\)BAE (c.g.c)

=> CD=BE (2 cạnh tương ứng)

Gọi CD giao BE tại P, AB giao CD tại Q

Do \(\Delta\)DAC=\(\Delta\)BAE (cmt) => ^D1=^B1 (2 góc tương ứng)

Xét 2 tam giác: \(\Delta\)DAQ và \(\Delta\)BPQ: ^DQA=^BQP (đối đỉnh), ^D1=^B1

=> ^DAQ=^BPQ => ^BPQ=900 hay CD vuông góc với BE.

2) Trên tia đối của AM lấy điểm F sao cho AF=2AM.

Chứng minh được: \(\Delta\)ABM=\(\Delta\)FCM (c.g.c) => AB=FC. Mà AB=AD => FC=AD

=> ^ABM=^FCM (2 góc tương ứng). Mà 2 góc này so le trong => AB//FC

=> ^BAC+^ACF=1800. (1)

Lại có: ^BAC+^BAD+^CAE+^EAD=3600 => ^EAD+^BAC=3600-^BAD-^CAE=1800 (2)

Từ (1) và (2) => ^ACF=^EAD.

Xét \(\Delta\)ACF & \(\Delta\)EAD: AC=EA; ^ACF=^EAD; CF=AD => \(\Delta\)ACF=\(\Delta\)EAD (c.g.c)

=> AF=DE (2 cạnh tương ứng). Thấy AF=2AM => DE=2AM.

3) Gọi AM cắt DE tại K

Ta có: \(\Delta\)ACF=\(\Delta\)EAD (cmt) => ^A1=^E1.

Mà ^A1+^EAK=900 => ^E1+^EAK=900 => \(\Delta\)EKA vuông tại K hay AM vuông góc với DE.

4) Có: ^ACH+^HAC=900. Mà ^OAE+^HAC=900 => ^ACH=^OAE hay ^ACM=^OAE.

Xét \(\Delta\)AMC & \(\Delta\)EOA có: AC=AE, ^A1=^E1; ^ACM=^OAE => \(\Delta\)AMC=\(\Delta\)EOA (g.c.g)

=> AM=EO (2 cạnh tương ứng).

Lại có: DE=2AM (cmt) => DE=2EO (O\(\in\)DE) hay  là trung điểm của DE (đpcm).

1 tháng 1 2018

Cảm ơn nhé!

10 tháng 8 2017

Ffjcbf

18 tháng 11 2016

Ta có hình vẽ sau:

A B C E D M N 1 2

a) Xét ΔABC và ΔADE có:

AB = AD (gt)

\(\widehat{A_1}\) = \(\widehat{A_2}\) ( 2 góc đối đỉnh)

AC = AE (gt)

\(\Rightarrow\) ΔABC = ΔADE (c-g-c)

\(\Rightarrow\) \(\widehat{ADE}\) = \(\widehat{ABC}\) (2 góc tương ứng)

Mà hai góc này lại ở vị tí so le trong nên:

\(\Rightarrow\) BC // DE (đpcm)

b) Vì BC // DE (ý a) \(\Rightarrow\) \(\widehat{MEA}\) = \(\widehat{NCA}\) (cặp góc so le trong)

Xét ΔMAE và ΔNAC có:

\(\widehat{MEA}\) = \(\widehat{NCA}\) ( cm trên)

AE = AC (gt)

\(\widehat{MAE}\) = \(\widehat{NAC}\) ( 2 góc đối đỉnh)

\(\Rightarrow\) ΔMAE = ΔNAC (g-c-g)

\(\Rightarrow\) AM = AN ( 2 cạnh tương ứng) (đpcm)

18 tháng 11 2016

Ta có hình vẽ:

A B C N M D E

a) Xét Δ DAE và Δ BAC có:

AD = AB (gt)

DAE = BAC (đối đỉnh)

AE = AC (gt)

Do đó, Δ DAE = Δ BAC (c.g.c)

=> DEA = BCA (2 góc tương ứng)

Mà DEA và BCA là 2 góc so le trong nên DE // BC (đpcm)

b) Vì DE // BC nên MDA = ABN (so le trong)

Xét Δ DAM và Δ BAN có:

MDA = ABN (cmt)

AD = AB (gt)

DAM = BAN (đối đỉnh)

Do đó, Δ DAM = Δ BAN (g.c.g)

=> AM = AN (2 cạnh tương ứng) (đpcm)

 

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IMa. Tính góc BACb.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau3)Cho tam giác ABC. Ở...
Đọc tiếp

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IM
a. Tính góc BAC
b.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH

2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau

3)Cho tam giác ABC. Ở phía ngoài tam giác ấy vẽ tam giác đều ACE. Trên nửa mặt phẳng chứa C có bờ AB, vẽ tam giác đều ABD. Gọi H, K, M theo thứ tự là trung điểm của AB, AE, CD. Chứng minh rằng HKM là tam giác đều

4)Cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng EF=1/2CD

0
22 tháng 3 2017

HFa, kg