Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AEH=góc AFH=90 độ
=>AEHF nội tiếp đường tròn tâm I, I là trung điểm của AH
b: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp đường tròn đường kính BC
=>O là trung điểm của BC
c: góc IEO=góc IEH+góc OEH
=góc IHE+góc OBE
=góc OBE+góc OCE=90 độ
=>IE là tiếp tuyến của (O)
d: IE=IF
OE=OF
=>IO là trung trực của EF
bạn ơi cho mình hỏi bài này ở đề năm bao nhiêu của thành phố nào vậy bạn?????
3. Xét tứ giác BFHD có:
HFB + HDB = 90º + 90º = 180º => BFHD là tứ giác nội tiếp. ⇒ FBH = FDH (1)
Tương tự có DHEC là tứ giác nội tiếp, ⇒HCE = HDE (2)
Mà BFEC là tứ giác nội tiếp nên FCE = FBE (3)
Từ (1) (2) (3)⇒ 2ABE = FDH + HDE = FDE
Vì BFEC là tứ giác nội tiếp đường tròn tâm I, đường kính BC nên theo quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung EF, ta có: FIE = 2.FBE = 2.ABE
⇒FIE = FDE
4.Vì BFEC là tứ giác nội tiếp nên:
ABC = 180º – FEC = AEF => ΔAEF ~ ΔABC (g.g)
Suy ra độ dài EF không đổi khi A chạy trên cung lớn BC của đường tròn (O)
Gọi K là giao điểm thứ 2 của ED và đường tròn đường kính BC
Theo tính chất góc ngoài: FDE = DKE + DEK
Theo ý 3 và quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung, có FDE = FIE = 2.DKE
⇒DKE = DEK => ΔDEK cân tại D => DE = DK
Chu vi ΔDEF là P = DE + EF + FD = EF + FD + DK = EF + FK
Có FK ≤ BC ( dây cung – đường kính) => P ≤ EF + BC không đổi
Dâu bằng xảy ra khi và chỉ khi FK đi qua I ⇔ D trùng I ⇔ ΔABC cân tại A.
Vậy A là điểm chính giữa của cung lớn BC
A B C O H E D S F T I G
a) Gọi BH cắt (O) tại S khác B. Qua tính chất quen thuộc của trực tâm ta thấy H,S đối xứng nhau qua AC.
Do đó ^ASE = ^AHE = 900 (Vì HE // BC, AH vuông góc BC) hay SE vuông góc với AS (1)
Ta có AD là đường kính của (O) => ^ASD chắn nửa (O) => SD vuông góc với AS (2)
Từ (1) và (2) suy ra SE trùng SD hay DE cắt (O) tại S. Như vậy BH,DE cắt nhau trên (O) (đpcm).
b) Tương tự câu a, CH,DF cũng cắt nhau tại 1 điểm trên (O), gọi nó là T
Dễ thấy AH = AS = AT (Tính chất đối xứng). Mà AH,AS,AT lần lượt là khoảng cách từ A đến EF,DE,DF
Nên A chính là tâm bàng tiếp góc D của \(\Delta\)DEF (A nằm ngoài \(\Delta\)DEF) (đpcm).
c) Gọi IH cắt CF tại G. Ta sẽ chỉ ra rằng B,G,E thẳng hàng. Thật vậy:
Ta có FA,FI là phân giác trong và ngoài của ^DFE => FI vuông góc AB => FI // CH
Từ đó \(\Delta\)IGF ~ \(\Delta\)HGC (g.g) => \(\frac{GI}{GH}=\frac{IF}{HC}\)(3)
Mặt khác ^IFE = ^FAH (Cùng phụ ^AFH) = ^HCB. Tương tự ^IEF = ^HBC
Suy ra \(\Delta\)EIF ~ \(\Delta\)BHC (g.g) => \(\frac{IF}{HC}=\frac{IE}{HB}\)(4)
Từ (3) và (4), kết hợp với ^GIE = ^GHB suy ra \(\Delta\)GEI ~ \(\Delta\)GBH (c.g.c)
=> ^IGE = ^HGB. Vì I,G,H thẳng hàng nên kéo theo B,G,E thẳng hàng
Vậy thì BE,CF,IH cắt nhau tại G (đpcm).
Bạn ơi, chứng minh cho mình câu b: AH=AS=AT với được không ạ
a: Xét tứ giác BEAD có
\(\widehat{BEA}+\widehat{BDA}=180^0\)
Do đó: BEAD là tứ giác nội tiếp
hay B,E,A,D cùng thuộc 1 đường tròn
Tâm O là trung điểm của AB
b: Xét tứ giác ADCF có
\(\widehat{ADC}+\widehat{AFC}=180^0\)
Do đó: ADCF là tứ giác nội tiếp
hay A,D,C,F cùng thuộc 1 đường tròn
Tâm I là trung điểm của AC