Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Trong he toa do Oxy, cho tam giac ABC co A(2;2), B(-5;3), C(-2;4). Goi H (x;y) la hinh chieu cua dinh A len duong thang BC. Tinh gia tri cua bieu thuc P = x2 + y2
Giải
- H là hình chiếu của A lên BC nên ta có: \(\overrightarrow{AH}.\overrightarrow{BC}=0\)
=> 3.(x-2) + 1.(y-2) = 0 <=> 3x + y =8 (1)
- H nằm trên đoạn BC nên : B,H,C thẳng hàng.
=> BH = kBC
=> \(\dfrac{x+5}{3}=\dfrac{y-3}{1}=x-3y=-14\)(2)
Từ (1) và (2) ta có hệ phương trình, giải hệ ta được: x=1, y=5.
Suy ra : x^2 + y^2 = 26 chọn B.
Câu 1:
Gọi G là trọng tâm tam giác \(\Rightarrow G\left(1;1\right)\)
\(\overrightarrow{BC}=\left(1;4\right)\Rightarrow\) đường thẳng d nhận \(\left(1;4\right)\) là 1 vtpt
Phương trình d:
\(1\left(x-1\right)+4\left(y-1\right)=0\Leftrightarrow x+4y-5=0\)
Câu 2:
Có 2 trường hợp thỏa mãn:
- Đường thẳng đi qua M và trung điểm AB
- Đường thẳng qua M và song song AB
TH1:
Gọi N là trung điểm AB \(\Rightarrow N\left(-1;2\right)\Rightarrow\overrightarrow{MN}=\left(-11;0\right)\)
\(\Rightarrow\) Đường thẳng MN nhận \(\left(0;1\right)\) là 1 vtpt
Phương trình MN:
\(0\left(x-10\right)+1\left(y-2\right)=0\Leftrightarrow y-2=0\)
TH2: \(\overrightarrow{AB}=\left(-8;4\right)=-4\left(2;-1\right)\)
Đường thẳng d song song AB nên nhận \(\left(1;2\right)\) là 1 vtpt
Phương trình d:
\(1\left(x-10\right)+2\left(y-2\right)=0\Leftrightarrow x+2y-14=0\)
A B C D M H
\(d:x+y+2=0\Rightarrow\overrightarrow{n_d}=\left(1;1\right)\)
\(A\in AD\Rightarrow A\left(a;2a+1\right)\) ;\(B\in BM\Rightarrow B\left(b;-3\right)\)
Gọi H là trung điểm AB \(\Rightarrow H\left(\frac{a+b}{2};a-1\right)\)
Do H thuộc trung trực AB:
\(\Rightarrow\frac{a+b}{2}+a-1+2=0\Leftrightarrow3a+b+2=0\)
\(\overrightarrow{AB}=\left(b-a;-4-2a\right)\) mà AB vuông góc d
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{n_d}=0\Leftrightarrow b-a-4-2a=0\Leftrightarrow3a-b+4=0\)
\(\left\{{}\begin{matrix}3a+b+2=0\\3a-b+4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(-1;-1\right)\\B\left(1;-3\right)\end{matrix}\right.\)
Phương trình BC: \(1\left(x-1\right)+2\left(y+3\right)=0\Leftrightarrow x+2y+5=0\)
\(\Rightarrow C\left(2c-5;-c\right)\Rightarrow M\left(c-3;\frac{-c-1}{2}\right)\)
Mà \(M\in BM\Rightarrow\frac{-c-1}{2}+3=0\Leftrightarrow-c+5=0\Rightarrow c=5\Rightarrow C\left(5;-5\right)\)
Lời giải:Áp dụng định lý cos ta có:
\(\cos A=\frac{AB^2+AC^2-BC^2}{2AB.AC}=\frac{-1}{2}\Rightarrow \widehat{A}=120^0\)
\(\cos B=\frac{BC^2+BA^2-AC^2}{2BC.BA}=\frac{-\sqrt{2}}{2}\Rightarrow \widehat{B}=45^0\)
\(\widehat{C}=180^0-(\widehat{A}+\widehat{B})=180^0-(120^0+45^0)=15^0\)
\(\widehat{ADB}=180^0-(\frac{\widehat{A}}{2}+\widehat{B})=180^0-(\frac{120^0}{2}+45^0)=75^0\)
\(\overrightarrow{AB}=\left(2;4\right);\overrightarrow{AC}=\left(11;-2\right);\overrightarrow{BC}=\left(9;-6\right)\)
\(\Rightarrow AB=2\sqrt{5};AC=5\sqrt{5};BC=3\sqrt{13}\)
Gọi D là chân đường phân giác trong góc A trên BC
\(\frac{DB}{DC}=\frac{AB}{AC}=\frac{2}{5}\Rightarrow BD=\frac{2}{5}CD=\frac{2}{7}BC\Rightarrow\overrightarrow{BD}=\frac{2}{7}\left(9;-6\right)\)
\(\Rightarrow D\left(\frac{46}{7};\frac{44}{7}\right)\Rightarrow\overrightarrow{AD}=\left(\frac{32}{7};\frac{16}{7}\right)=\frac{16}{7}\left(2;1\right)\)
\(\Rightarrow\) Đường thẳng AD nhận \(\left(1;-2\right)\) là 1 vtpt
Phương trình AD:
\(1\left(x-2\right)-2\left(y-4\right)=0\Leftrightarrow x-2y+6=0\)
2.
Đường thẳng d có 1 vtpt là \(\left(1;3\right)\)
Gọi vtpt của d' là \(\left(a;b\right)\Rightarrow cos45^0=\frac{\left|a+3b\right|}{\sqrt{10\left(a^2+b^2\right)}}=\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow a^2+6ab+9b^2=5a^2+5b^2\)
\(\Leftrightarrow4a^2-6ab-4b^2=0\Leftrightarrow\left(2a+b\right)\left(a-2b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}b=-2a\\a=2b\end{matrix}\right.\)
Chọn \(a=2\Rightarrow\left[{}\begin{matrix}b=-4\\b=1\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn:
\(\left[{}\begin{matrix}1\left(x+2\right)-2\left(y-0\right)=0\\2\left(x+2\right)+1\left(y-0\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2y+2=0\\2x+y+4=0\end{matrix}\right.\)
1) Cho tam giac ABC co A( -1;2); B(0;3); C(5;-2). Tim toa do chan duong cao ha tu dinh A cua tam giac ABC.
Giải
Gọi tọa độ châ đường cao là H( a,b).
-Do AH vuông góc BC và BH vuông góc AC nên ta có:
\(\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\)
<=> Hệ phương trình: \(\left\{{}\begin{matrix}5x-5y=-15\\6x-4y=-12\end{matrix}\right.< =>\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)
Chọn A.