K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

Đặt số đo góc B là x, số đo góc C là y

Theo đề, ta có:

\(\left\{{}\begin{matrix}x+y=90\\x-y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=114\\x+y=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=57^0\\y=33^0\end{matrix}\right.\)

Bài 3: 

\(\widehat{xAC}=\dfrac{180^0-80^0}{2}=50^0\)

\(\Leftrightarrow\widehat{xAC}=\widehat{ACB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//BC

Bài 15: 

\(\widehat{ABH}+\widehat{A}=90^0\)

\(\widehat{ACK}+\widehat{A}=90^0\)

Do đó: \(\widehat{ABH}=\widehat{ACK}\)

16 tháng 1 2016

à quên chưa nói câu a không phải làm

16 tháng 1 2016

mất hứng!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

31 tháng 10 2016

Phần c đơn giản lắm :) Vừa nghĩ ra tiếp :

Ta có :

  • \(4.\left(S_{ABC}\right)^2=\left(2.S_{ABC}\right)^2\)

\(\Rightarrow\left(AB.AC\right)^2=\left(AH.BC\right)^2\)

\(\Rightarrow AB^2.AC^2=AH^2.BC^2\)

Mà \(BC^2=AB^2+AC^2\)( Pythagores )

\(\Rightarrow AB^2.AC^2=AH^2\left(AB^2+AC^2\right)\)

\(\Rightarrow\frac{1}{AH^2}=\frac{AB^2+BC^2}{AB^2.AC^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

Vậy...

31 tháng 10 2016

Ngồi nháp rồi nghĩ ra phần a  :) Sẽ cập nhật khi nghĩ được b , c

[ Tự vẽ hình ]

Áp dụng định lý Pythagores có :

  • \(AB^2+AC^2=BC^2\)
  • \(AH^2=AC^2-HC^2=AB^2-BH^2\)

\(\Rightarrow AH^2=\frac{AC^2-HC^2+AB^2-HB^2}{2}\)

\(=\frac{\left(AB^2+AC^2\right)-\left(HB^2+HC^2+2HB.HC\right)+2HB.HC}{2}\)

\(=\frac{BC^2-\left(HB+HC\right)^2+2HB.HC}{2}\)

\(=\frac{BC^2-BC^2+2HB.HC}{2}\)

\(=\frac{2HB.HC}{2}\)

\(=HB.HC\)

Vậy \(AH^2=HB.HC.\)