K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

Câu 3:

Giải:

Ta có: \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\Rightarrow\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10-6c}{25+9+4}=\frac{0}{25+9+4}=0\)

\(\Rightarrow\left\{\begin{matrix}\frac{15a-10b}{25}=0\\\frac{6c-15a}{9}=0\\\frac{10b-6c}{4}=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}15a-10b=0\\6c-15a=0\\10b-6c=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}15a=10b\\6c=15a\\10b=6c\end{matrix}\right.\)

\(\Rightarrow15a=10b=6c\)

\(\Rightarrow\frac{15a}{30}=\frac{10b}{30}=\frac{6c}{30}\)

\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)

\(\Rightarrow\left\{\begin{matrix}a=-10\\b=-15\\c=-25\end{matrix}\right.\)

Vậy \(a=-10;b=-15;c=-25\)

6 tháng 3 2017

3.Từ \(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\)

\(\Rightarrow\dfrac{15a-10b}{25}=\dfrac{6c-15a}{9}=\dfrac{10b-6c}{4}\)

Áp dụng tc dãy tỉ số bằng nhau ta có :

\(\dfrac{15a-10b}{25}=\dfrac{6c-15a}{9}=\dfrac{10b-6c}{4}=\dfrac{15a-10b+6c-15a+10b-6c}{25+4+9}=\dfrac{0}{25+4+9}=0\)

\(\Rightarrow\left\{{}\begin{matrix}15a-10b=0\\6c-15a=0\\10b-6c=0\end{matrix}\right.\Rightarrow15a=10b=6c\)
\(\Rightarrow\dfrac{15a}{60}=\dfrac{10b}{60}=\dfrac{6c}{60}\)
\(\Rightarrow\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{10}\)

Áp dụng tc dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{10}=\dfrac{a+b+c}{4+6+10}=\dfrac{-50}{20}=\dfrac{-5}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}a=-10\\b=-15\\c=-25\end{matrix}\right.\)

5 tháng 3 2018

1)

+)  Ta thấy \(\widehat{ECI}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Mà \(\widehat{ACB}=\widehat{ABC}\)   (Tam giác ABC cân tại A)

nên \(\widehat{ECI}=\widehat{DBA}\)

Xét tam giác ABD và tam giác ICE có:

BD = CE (gt)

\(\widehat{DBA}=\widehat{ECI}\left(cmt\right)\)

CI = BA ( Cùng bằng AC)

\(\Rightarrow\Delta ABD=\Delta ICE\left(c-g-c\right)\)

+) Xét tam giác AEI, theo bất đẳng thức trong tam giác, ta có:

   AI > AE + EI

Lại có do \(\Delta ABD=\Delta ICE\Rightarrow AD=IE\)

Vậy nên ta có AI > AE + AD \(\Rightarrow2AC>AD+AE\Rightarrow AB+AC>AD+AE\)

2) Do \(\Delta ABD=\Delta ICE\Rightarrow\widehat{MBD}=\widehat{NCE}\)

Vậy thì ta thấy ngay \(\Delta BDM=\Delta CEN\)   (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow BM=CN\)

3) Ta thấy AB + AC = AM + MB + AC = AM + CN + AC = AM  + AN

Ta cần chứng minh BC < MN.

Do BD = EC nên AC = DE

Xét tam giác vuông MDO ta có DO < MO (Quan hệ đường vuông góc, đường xiên)

Ta cũng có OE < ON

Vậy nên DE < MN hay BC < MN

Từ đó: AB + AC + BC < AM + AN + MN

Hay \(P_{AMN}>P_{ABC}\) 

4 tháng 3 2018

1, a, Xét tam giác ABD và ICE có : 

BD=CE

AB=CI ( =AC )

góc ABD=ICE ( vì góc ABD=ACD mà ACD=ICE )

=> tam giác ABD=ICE ( c.g.c ) 

8 tháng 4 2017

1. a) \(2009-\left|x-2009\right|=x\)

\(\Rightarrow\left|x-2009\right|=2009-x\)

\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)

\(\Rightarrow x-2009\le0\)

\(\Rightarrow x\le2009\)

Vậy \(x\le2009.\)

b) Ta có: \(\left[{}\begin{matrix}\left(2x-1\right)^{2008}\ge0\forall x\\\left(y-\dfrac{2}{5}\right)^{2008}\ge0\forall y\\\left|x+y-z\right|\ge0\forall x,y,z\end{matrix}\right.\) \(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\forall x,y,z\)

Dấu \("="\) xảy ra khi \(\left[{}\begin{matrix}\left(2x-1\right)^{2008}=0\\\left(y-\dfrac{2}{5}\right)^{2008}=0\\\left|x+y-z\right|=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=\dfrac{9}{10}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=\dfrac{9}{10}\end{matrix}\right.\).

8 tháng 4 2017

Bạn kia làm câu 1 rồi thì mình làm câu 2 nhé!

2. Ta có:\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\)

\(\Rightarrow\dfrac{15a-10b}{25}=\dfrac{6c-15a}{9}=\dfrac{5b-3c}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{15a-10b}{25}=\dfrac{6c-15a}{9}=\dfrac{15a-10b+6c-15a}{25+9}\)=\(\dfrac{-10b+6c}{34}=\dfrac{-5b+3c}{17}\)

\(\Rightarrow\dfrac{-5b+3c}{17}=\dfrac{5b-3c}{2}\Rightarrow5b-3c=0\)

=> 5b=3c =>\(\left\{{}\begin{matrix}b=\dfrac{3}{5}c\\a=\dfrac{2}{5}c\end{matrix}\right.\)

=>\(\dfrac{3}{5}c+\dfrac{2}{5}c+c=-50\)

=> \(c\left(\dfrac{3}{5}+\dfrac{2}{5}+1\right)=-50\)

=> 2c = -50

=> c= -25

=>\(\left\{{}\begin{matrix}b=-25.\dfrac{3}{5}=-15\\a=-25.\dfrac{2}{5}=-10\end{matrix}\right.\)

Vậy a= -10; b= -15; c= -25

20 tháng 10 2017

Ta luôn có :|x-2009|\(\ge\)0(1)

Mà :2009-|x-2009|=x nên 2009\(\ge\)x(2)

(1)(2) nên ta có x \(\in\){0;1;2;3;4;5;...;2009}

23 tháng 5 2018

a )

ta có : \(\widehat{C_1}=\widehat{C_2}\) ( 2 góc đối đỉnh ) 

mà \(\widehat{C_1}=\widehat{B}\) ( tam gíac ABC cân tại A ) 

Do do : \(\widehat{C_2}=\widehat{B}\)

xét \(\Delta ABDva\Delta ICE,co:\)

AB = AC = IC ( gt ) 

BD=CE ( gt )

\(\widehat{C_2}=\widehat{B}\) (cmt ) 

Do do : \(\Delta ABD=\Delta ICE\left(c-g-c\right)\)

15 tháng 8 2018

mình chỉ làm cho bạn câu a) thôi nhé. còn lại bạn cố gắng suy nghĩ nha vì mình ko có nhiều time

a) Ta xét hai tam giác ABD và ICE

Ta có: - AB= IC( cùng cạnh AC)

- góc ABD= ICE ( cùng bằng góc ACD:g. ABD= g.ACD vì 2 góc đấy tam giác cân ABC, g.ICE = g.ACD vì 2 góc đối đỉnh)

- BD=CE( giả thiết)

Vậy tam giác ABD= tam giác ICE ( c.g.c)

NHỚ TICK NHA!yeu

Chúc bạn mày mò ra bài

1: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE
Do đó: ΔABD=ΔACE

2: Xét ΔDBM vuông tại D và ΔECN vuông tại E có

BD=CE
góc DBM=góc ECN

Do đó: ΔDBM=ΔECN

Suy ra: BM=CN

5 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau