K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/cho tam giac ABC can tai A ( goc A<900) cac duong cao AD va BE cat nhau tai H ( D thuoc BC, E thuoc AC) a/CM tu giac DHEC noi tiep duong tron b/chung minh ED=BD va goc HBD=goc HCDc/Goi O la tam cua duong tron ngoai tiep tam giac AHE.CM rang ED la tiep tuyen cua duong tron (O)2/cho ram giac ABC co ba goc nhon noi tiep duong tron (O).Hai duong cao AD va BJ cat nhau tai Ha/CM;tu giac CDHK noi tiep b/ve d.kinh AF .tia AD cat (O)tai E.CM BC//EFc/CMR; AD/HD=BD.CDb/goi I la trung diem cua BC...
Đọc tiếp

1/cho tam giac ABC can tai A ( goc A<900) cac duong cao AD va BE cat nhau tai H ( D thuoc BC, E thuoc AC) 

a/CM tu giac DHEC noi tiep duong tron 

b/chung minh ED=BD va goc HBD=goc HCD

c/Goi O la tam cua duong tron ngoai tiep tam giac AHE.CM rang ED la tiep tuyen cua duong tron (O)

2/cho ram giac ABC co ba goc nhon noi tiep duong tron (O).Hai duong cao AD va BJ cat nhau tai H

a/CM;tu giac CDHK noi tiep 

b/ve d.kinh AF .tia AD cat (O)tai E.CM BC//EF

c/CMR; AD/HD=BD.CD

b/goi I la trung diem cua BC .CMR: H,I,F thang hang

3/cho tam giac nhon  ABC noi tiep duong tron tam O,duong cao BHva CK lan luot cat duong tron tai Eva F

a.CMR: tu giac BKHC noi tiep 

b.CM: A la diem chinh giua cu cung EF 

c.CM:OA//EF

d.CM:EF//HK

4/cho tam giac ABC vuong tai A co AB<AC.Ke duong cao AH.Tren HC lay diem D sao cho HD=Hb

a/CMR:tap giac ABD can

b/Tu C ke CF vuong goc voi AD keo dai tai E

Chung minh tu giac AHEC noi tiep duoc trong 1 duong tron .Xac dinh tam O cua duong tron nay

c/CM:AB.ED=HB.CD 

 

0
3 tháng 5 2015

Bài này là đề thi lớp 10 TPHCM năm rồi

12 tháng 4 2020

enytunyt

9 tháng 3 2017

kb vs mik ik 

3 tháng 1 2020

bạn viết tiếng việt đi bạn. nhìn thế khó đọc

3 tháng 1 2020

A B C I G A1 B1 C1 J

Gọi G' là giao điểm của IJ và AA1

Xét \(\Delta ABC\)có B1,C1 lần lượt là trung điểm của AC,AB nên B1C1 là đường trung bình 

\(\Rightarrow B_1C_1=\frac{BC}{2}\)

Tương tự : \(A_1B_1=\frac{AB}{2};A_1C_1=\frac{AC}{2}\)

Xét \(\Delta ABC\)và \(\Delta A_1B_1C_1\)có \(\frac{A_1B_1}{AB}=\frac{B_1C_1}{BC}=\frac{A_1C_1}{AC}=\frac{1}{2}\)

\(\Rightarrow\Delta A_1B_1C_1~\Delta ABC\left(c.c.c\right)\)\(\Rightarrow\widehat{B_1A_1C_1}=\widehat{BAC};\widehat{A_1B_1C_1}=\widehat{ABC}\)

Mà \(\widehat{JA_1B_1}=\frac{\widehat{B_1A_1C_1}}{2},\widehat{IAB}=\frac{\widehat{BAC}}{2},\widehat{JB_1A_1}=\frac{\widehat{A_1B_1C}}{2},\widehat{IBA}=\frac{\widehat{ABC}}{2}\)

Nên \(\widehat{JA_1B_1}=\widehat{IAB};\widehat{JB_1A_1}=\widehat{IBA}\)

Do đó \(\Delta JA_1B_1~\Delta IAB\left(g.g\right)\Rightarrow\frac{JA_1}{IA}=\frac{A_1B_1}{AB}=\frac{1}{2}\)

Mà \(\widehat{BAA_1}=\widehat{AA_1B_1}\) nên \(\widehat{IAA_1}=\widehat{IA_1A}\)Suy ra AI // A1J

Xét \(\Delta G'AI\)có AI // A1J nên \(\frac{G'A_1}{G'A}=\frac{G'J}{G'I}=\frac{JA_1}{IA}=\frac{1}{2}\Rightarrow AG'=\frac{2}{3}AA_1\)

Xét \(\Delta ABC\)có AA1 là đường trung tuyến, G' thộc đoạn thẳng AAvà AG' = \(\frac{2}{3}AA_1\)

Do đó : G' là trọng tâm của tam giác ABC nên G' \(\equiv\)G.

Vậy I,G,J thẳng hàng và GI = 2GJ

17 tháng 8 2019

A B C O H D E F P Q M N

a) Dễ có tứ giác BCEF nội tiếp đường tròn (BC). Suy ra ^BPQ = ^AFE = ^ECB = ^BCQ

Vậy tứ giác BPCQ nội tiếp (Quỹ tích cung chứa góc) (đpcm).

b) Có ^BPQ = ^BCQ = ^BFD (cmt) hay ^DPF = ^DFP. Vậy \(\Delta\)DPF cân tại D (đpcm).

c) Dễ thấy NE là tiếp tuyến của (AEF), suy ra ^NEF = ^EAF = ^BDF = 1800 - ^FDN

Suy ra tứ giác DFEN nội tiếp. Khi đó \(\Delta\)MFD ~ \(\Delta\)MNE (g.g). Vậy MF.ME = MD.MN (đpcm).

d) Ta thấy ^FDB = ^EDC (=^BAC); ^DNE = ^DFM (Vì tứ giác DFEN nội tiếp)

Do đó \(\Delta\)DEN ~ \(\Delta\)DMF (g.g). Từ đây DN.DM = DE.DF (1)

Từ câu b, ta có \(\Delta\)DPF cân tại D (DF = DP). Tương tự DE= DQ (2)

Từ (1) và (2) suy ra DN.DM = DP.DQ dẫn đến \(\Delta\)DPM ~ \(\Delta\)DNQ (c.g.c)

Suy ra 4 điểm M,P,Q,N cùng thuộc một đường tròn hay (MPQ) đi qua N cố định (đpcm).