Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4
= (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y4
Đặt x2 + 5xy + 5y2 = t ( t Z) thì
A = (t - y2)( t + y2) + y4 = t2 –y4 + y4 = t2 = (x2 + 5xy + 5y2)2
V ì x, y, z Z nên x2 Z, 5xy Z, 5y2 Z x2 + 5xy + 5y2 Z
Vậy A là số chính phương.
1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
x+y=-2
Áp dụng t/c dãy tỉ số = nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y}{3+4}=\frac{-2}{7}\)
Suy ra x=\(\frac{-6}{7}\)
y=\(\frac{-8}{7}\)
z= thay vào dãy tỉ số tính hok tốt
Bài 1: Chứng minh rằng mọi số nguyên x, y thì:
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + là số chính phương.
Giải: Ta có A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4
= (x2 + 5xy + 4y2)(x2 + 5xy + 6y2) + y4
Đặt x2 + 5xy + 5y2 = t (t ∈ Z) thì
A = (t - y2)(t + y2) + y4 = t2 - y4 + y4 = t2 = (x2 + 5xy + 5y2)2
Vì x, y, z ∈ Z nên x2 ∈ Z, 5xy ∈ Z, 5y2 ∈ Z => (x2 + 5xy + 5y2) ∈ Z
Vậy A là số chính phương.
Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.
Giải: Gọi 4 số tự nhiên, liên tiếp đó là n, n + 1, n + 2, n + 3 (n ∈ Z). Ta có:
n(n + 1)(n + 2)(n + 3) + 1 = n . ( n + 3)(n + 1)(n + 2) + 1
= (n2 + 3n)(n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2
= (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N. Vậy n(n + 1)(n + 2)(+ 3) + 1 là số chính phương.
p nguyên tố p>3
=>p có dạng 6m+1 và 6m-1
Thay vào p^2+2012 chứng minh nó là hợp số nữa là xong bạn à.
Nếu thấy bài làm của mình đúng thì tick nha bạn.Cảm ơn bạn nhiều.
\(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\text{[}\left(x+y\right)\left(x+4y\right)\text{]}\text{[}\left(x+2y\right)\left(x+3y\right)\text{]}+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
\(=\text{[}\left(x^2+5xy\right)+4y^2\text{]}\text{[}\left(x^2+5xy\right)+6y^2\text{]}+y^4\)
\(=\left(x^2+5xy\right)^2+10y^2\left(x^2+5xy\right)+25y^4=\left(x^2+5xy+5y^2\right)\)
Vậy đề bài là số chính phương.